Skip to main content

A review of modern treeline migration, the factors controlling it and the implications for carbon storage

Abstract

Numerous studies have reported that treelines are moving to higher elevations and higher latitudes. Most treelines are temperature limited and warmer climate expands the area in which trees are capable of growing. Hence, climate change has been assumed to be the main driver behind this treeline movement. The latest review of treeline studies was published in 2009 by Harsch et al. Since then, a plethora of papers have been published studying local treeline migration. Here we bring together this knowledge through a review of 142 treeline related publications, including 477 study locations. We summarize the information known about factors limiting tree-growth at and near treelines. Treeline migration is not only dependent on favorable growing conditions but also requires seedling establishment and survival above the current treeline. These conditions appear to have become favorable at many locations, particularly so in recent years. The review revealed that at 66% of these treeline sites forest cover had increased in elevational or latitudinal extent. The physical form of treelines influences how likely they are to migrate and can be used as an indicator when predicting future treeline movements. Our analysis also revealed that while a greater percentage of elevational treelines are moving, the latitudinal treelines are capable of moving at greater horizontal speed. This can potentially have substantial impacts on ecosystem carbon storage. To conclude the review, we present the three main hypotheses as to whether ecosystem carbon budgets will be reduced, increased or remain the same due to treeline migration. While the answer still remains under debate, we believe that all three hypotheses are likely to apply depending on the encroached ecosystem. Concerningly, evidence is emerging on how treeline migration may turn tundra landscapes from net sinks to net sources of carbon dioxide in the future.

References

  1. Alftine K, Malanson G, Fagre D (2003) Feedback-Driven Response to Multidecadal Climatic Variability at an Alpine Treeline. Phys Geogr 24(6): 520–535. https://doi.org/10.2747/0272-3646.24.6.520

    Article  Google Scholar 

  2. Ameztegui A, Coll L, Brotons L, et al. (2016) Land - use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Global Ecol Biogeogr 25(3): 263–273. https://doi.org/10.1111/geb.12407

    Article  Google Scholar 

  3. Andersen M, Baker W (2006) Reconstructing Landscape-scale Tree Invasion Using Survey Notes in the Medicine Bow Mountains, Wyoming, USA. Landscape Ecol 21(2): 243–258. https://doi.org/10.1007/s10980-005-1938-3

    Article  Google Scholar 

  4. Anderson B (2012) Intensification of seasonal extremes given a 2°C global warming target. Climate Change 112(2): 325–337. https://doi.org/10.1007/s10584-011-0213-7

    Article  Google Scholar 

  5. Au TF, Maxwell JT, Novick KA, et al. (2020) Demographic shifts in eastern US forests increase the impact of late-season drought on forest growth. Ecography 43(10): 1475–1486. https://doi.org/10.1111/ecog.05055

    Article  Google Scholar 

  6. Aune S, Hofgaard A, Soderstrom L (2011) Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Can J For Res 41(3): 437–449. https://doi.org/10.1139/X10-086

    Article  Google Scholar 

  7. Autio J, (2006). Environmental factors controlling the position of the actual timberline and treeline of the fells of Finish Scandinavia. Dissertation, University of Oulu, Oulu, Finland

    Google Scholar 

  8. Bader M, van Geloof I, Rietkerk M (2007) High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol 191(1): 33–45. https://doi.org/10.1007/s11258-006-9212-6

    Article  Google Scholar 

  9. Baker BB (2007) Advancing Treeline and Retreating Glaciers: Implications for Conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39(2): 200–209.

    Article  Google Scholar 

  10. Bergeron O, Margolis HA, Black TA, et al. (2007) Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. Glob Change Biol 13: 89–107. https://doi.org/10.1111/j.1365-2486.2006.01281.x

    Article  Google Scholar 

  11. Bhatt US, Walker D, Raynolds M, et al. (2010) Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline. Earth Interact 14(8): 1. https://doi.org/10.1175/2010EI315.1

    Article  Google Scholar 

  12. Blinova I, Chmielewski F-M (2015) Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012? Int J Biometeorol 59(6): 693–705. https://doi.org/10.1007/s00484-014-0880-y

    Article  Google Scholar 

  13. Bonnaventure PP, Lewkowicz AG (2012) Permafrost probability modeling above and below treeline, Yukon, Canada. Cold Regi Sci Technol 79–80: 92–106. https://doi.org/10.1016/j.coldregions.2012.03.004

    Article  Google Scholar 

  14. Bunn A, Goetz S, Kimball J, et al. (2007) Northern high - latitude ecosystems respond to climate change. Eos 88(34): 333–335. https://doi.org/10.1029/2007EO340001

    Article  Google Scholar 

  15. Butler D, Dechano L (2001) Environmental change in Glacier National Park, Montana: an assessment through repeat photography from fire lookout. Phys Geogr 22(4): 291–304. https://doi.org/10.1080/02723646.2001.10642744

    Article  Google Scholar 

  16. Cahoon SMP, Sullivan PF, Shaver GR, et al. (2012) Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol Lett 15(12): 1415–1422. https://doi.org/10.1111/j.1461-0248.2012.01865.x

    Article  Google Scholar 

  17. Camarero J, Gutierrez E (2004) Pace and Pattern of Recent Treeline Dynamics: Response of Ecotones to Climatic Variability in the Spanish Pyrenees. Climatic Change 63(1): 181–200. https://doi.org/10.1023/B:CLIM.0000018507.71343.46

    Article  Google Scholar 

  18. Carrara PE, McGeehin JP (2015) Evidence of a higher late-Holocene treeline along the Continental Divide in central Colorado. The Holocene 25(11): 1829–1837. https://doi.org/10.1177/0959683615591353

    Article  Google Scholar 

  19. Catalan J, Pla S, Rieradevall M, et al. (2002) Lake Redo ecosystem response to an increasing warming the Pyrenees during the twentieth century. J Paleolimnol 28(1): 129–145. https://doi.org/10.1023/A:1020380104031

    Article  Google Scholar 

  20. Celis G, Mauritz M, Bracho R, et al. (2017) Tundra is a consistent source of CO 2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements. J Geophys Res: Biogeo 122(6): 1471–1485. https://doi.org/10.1002/2016JG003671

    Article  Google Scholar 

  21. Christensen TR, Michelsen A, Jonasson S, et al. (1997) Carbon Dioxide and Methane Exchange of a Subarctic Heath in Response to Climate Change Related Environmental Manipulations. Oikos 79(1): 34–44. https://doi.org/10.2307/3546087

    Article  Google Scholar 

  22. Cieraad E, McGlone MS, Huntley B (2014) Southern Hemisphere temperate tree lines are not climatically depressed. J Biogeogr 41(8): 1456–1466. https://doi.org/10.1111/jbi.12308

    Article  Google Scholar 

  23. Compostella C, Caccianiga M (2017) A comparison between different treeline types shows contrasting responses to climate fluctuations. Plant Biosyst 151(3): 436–449. https://doi.org/10.1080/11263504.2016.1179695

    Article  Google Scholar 

  24. Coop JD, Givnish TJ (2007) Spatial and temporal patterns of recent forest encroachment in montane grasslands of the Valles Caldera, New Mexico, USA. J Biogeogr 34(5): 914–927. https://doi.org/10.1111/j.1365-2699.2006.01660.x

    Article  Google Scholar 

  25. Coops NC, Morsdorf F, Schaepman ME, et al. (2013) Characterization of an alpine tree line using airborne LiDAR data and physiological modeling. Glob Change Biol 19(12): 3808–3821. https://doi.org/10.1111/gcb.12319

    Article  Google Scholar 

  26. Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J Ecol 95(2): 352–363. https://doi.org/10.1111/j.1365-2745.2006.01200.x

    Article  Google Scholar 

  27. Dawes MA, Philipson CD, Fonti P, et al. (2015) Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Glob Change Biol 21(5): 2005–2021. https://doi.org/10.1111/gcb.12819

    Article  Google Scholar 

  28. DeMarco J, Mack MC, Bret-Harte MS, et al. (2014) Long - term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5(6): 1–22. https://doi.org/10.1890/ES13-00281.1

    Article  Google Scholar 

  29. Dinca L, Nita MD, Hofgaard A, et al. (2017) Forests dynamics in the montane-alpine boundary: a comparative study using satellite imagery and climate data. Clim Res 73: 79–110 https://doi.org/10.3354/cr01452

    Article  Google Scholar 

  30. Dirnbock T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change.(Report). Glob Change Biol 17(2): 990. https://doi.org/10.1111/j.1365-2486.2010.02266.x

    Article  Google Scholar 

  31. Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17(2): 990–996. https://doi.org/10.1111/j.1365-2486.2010.02266.x

    Article  Google Scholar 

  32. Djukic I, Zehetner F, Tatzber M, et al. (2010) Soil organic - matter stocks and characteristics along an Alpine elevation gradient. J Plant Nutr Soil Sc 173(1): 30–38. https://doi.org/10.1002/jpln.200900027

    Article  Google Scholar 

  33. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change - driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92(2): 241–252. https://doi.org/10.1111/j.0022-0477.2004.00872.x

    Article  Google Scholar 

  34. Epstein HE, Raynolds MK, Walker DA, et al. (2012) Dynamics of aboveground phytomass of the circumpolar arctic tundra during the past three decades. Environ Res Lett 7(1): 015506. https://doi.org/10.1088/1748-9326/7/1/015506

    Article  Google Scholar 

  35. Esper J, Schweingruber F (2004) Large-scale treeline changes recorded in Siberia. Geophys Res Lett 31(6). https://doi.org/10.1029/2003GL019178

    Google Scholar 

  36. Euskirchen ES, Bret-Harte MS, Scott GJ, et al. (2012) Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3(1): 1–19. https://doi.org/10.1890/ES11-00202.1

    Article  Google Scholar 

  37. Fernandez CW, Kennedy PG, (2016). Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209(4): 1382–1394. https://doi.org/10.1111/nph.13648

    Article  Google Scholar 

  38. Feurdean A, Gałka M, Tanţău I, et al. (2016) Tree and timberline shifts in the northern Romanian Carpathians during the Holocene and the responses to environmental changes. Quaternary Sci Rev 134: 100–113. https://doi.org/10.1016/j.quascirev.2015.12.020

    Article  Google Scholar 

  39. Field CB, Lobell DB, Peters HA, et al. (2007) Feedbacks of Terrestrial Ecosystems to Climate Change. Annu Rev Env Resour 32: 1–29. https://doi.org/10.1146/annurev.energy.32.053006.141119

    Article  Google Scholar 

  40. Gehrig-Fasel J, (2007). Treeline and climate change: analyzing and modeling patterns and shifts in the Swiss Alps, PhD thesis, Universite de Lausanne, Lausanne

    Google Scholar 

  41. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: Climate change or land abandonment? J Veg Sci 18(4): 571–582. https://doi.org/10.1111/j.1654-1103.2007.tb02571.x

    Article  Google Scholar 

  42. Grace J, Berninger F, Nagy L (2002) Impacts of Climate Change on the Tree Line. Ann Bot-London 90(4): 537–544. https://doi.org/10.1093/aob/mcf222

    Article  Google Scholar 

  43. Groendahl L, Friborg T, Soegaard H (2007) Temperature and snow-melt controls on interannual variability in carbon exchange in the high Arctic. Theor Appl Climatol 88(1): 111–125. https://doi.org/10.1007/s00704-005-0228-y

    Article  Google Scholar 

  44. Grogan P, Chapin III F (1999) Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems 2(5): 451–459.

    Article  Google Scholar 

  45. Harsch MA, Buxton R, Duncan RP, et al. (2012) Causes of tree line stability: stem growth, recruitment and mortality rates over 15 years at New Zealand Nothofagus tree lines. J Biogeogr 39(11): 2061–2071. https://doi.org/10.1111/j.1365-2699.2012.02763.x

    Article  Google Scholar 

  46. Harsch MA, Hulme PE, McGlone MS, et al. (2009) Are treelines advancing? A global meta- analysis of treeline response to climate warming. Ecol Lett 12(10): 1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

    Article  Google Scholar 

  47. Hartley IP, Garnett MH, Sommerkorn M, et al. (2012) A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Change 2(12): 875. https://doi.org/10.1038/nclimate1575

    Article  Google Scholar 

  48. Hobbie SE, Chapin FS, III (1998) The response of tundra plant biomass, above-ground production, nitrogen, and CO□ flux to experimental warming. Ecology 79(5): 1526–1544. https://doi.org/10.2307/176774

    Google Scholar 

  49. Hofgaard A, Tommervik H, Rees G, et al. (2013) Latitudinal forest advance in northernmost Norway since the early 20th century. J Biogeogr 40(5): 938–949. https://doi.org/10.1111/jbi.12053

    Article  Google Scholar 

  50. Holtmeier F-K, Broll G (2010) Wind as an Ecological Agent at Treelines in North America, the Alps, and the European Subarctic. Phys Geogr 31(3): 203–233. https://doi.org/10.2747/0272-3646.31.3.203

    Article  Google Scholar 

  51. Holtmeier FK, Broll G (2007) Treeline advance - driving processes and adverse factors. Landscape Online 1(1): 1–33. https://doi.org/10.3097/LO.200701

    Article  Google Scholar 

  52. Holtmeier FK, Broll G (2011) Response of Scots Pine (Pinus sylvestris) to Warming Climate at Its Altitudinal Limit in Northernmost Subarctic Finland. Arctic 64(3): 269–280.

    Article  Google Scholar 

  53. Holtmeier FK, Broll G (2012) Landform Influences on Treeline Patchiness and Dynamics in a Changing Climate. Phys Geogr 33(5): 403–437. https://doi.org/10.2747/0272-3646.33.5.403

    Article  Google Scholar 

  54. Iain PH, Mark HG, Martin S, et al. (2012) A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Change 2(12): 875. https://doi.org/10.1038/nclimate1575

    Article  Google Scholar 

  55. IPCC, (2014). Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2014. Core Writing Team, R. K. Pachauri and L. A. Meyer. Geneva, Switzerland, IPCC.

    Google Scholar 

  56. Jake MA, Jeffrey MD, Jonathan ML (2015) Novel competitors shape species’ responses to climate change. Nature 525(7570): 515. https://doi.org/10.1038/nature14952

    Article  Google Scholar 

  57. Jørgensen SE, (2009). Ecosystem ecology. Editor-in-chief, Sven Erik Jørgensen. Amsterdam, Netherlands; Boston, Mass., Elsevier.

  58. Kaplan JO, New M (2006) Arctic climate change with a 2C global warming: Timing, climate patterns and vegetation change. Climatic Change 79(3–4): 213–241. https://doi.org/10.1007/s10584-006-9113-7

    Article  Google Scholar 

  59. Kauppi P, Posch M, Pirinen P (2014) Large Impacts of Climatic Warming on Growth of Boreal Forests since 1960. PLoS ONE 9(11). https://doi.org/10.1371/journal.pone.0111340

    Google Scholar 

  60. Kelsey KC, Leffler AJ, Beard KH, et al. (2016) Interactions among vegetation, climate, and herbivory control greenhouse gas fluxes in a subarctic coastal wetland. Journal Geophys Res: Biogeosci 121(12): 2960–2975. https://doi.org/10.1002/2016JG003546

    Article  Google Scholar 

  61. Kharuk VI, Ranson KJ, Im ST, et al. (2009) Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest—tundra ecotone. Scand J Forest Res 24(2): 130–139.https://doi.org/10.1080/02827580902845823

    Article  Google Scholar 

  62. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4): 445–459. https://doi.org/10.1007/s004420050540

    Article  Google Scholar 

  63. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5): 713–732.

    Article  Google Scholar 

  64. Körner C, Riedl S, (2012). Alpine Treelines Functional Ecology of the Global High Elevation Tree Limits, Basel: Springer.

    Google Scholar 

  65. Kruse S, Wieczorek M, Jeltsch F, et al. (2016) Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecol Model 338: 101–121. https://doi.org/10.1016/j.ecolmodel.2016.08.003

    Article  Google Scholar 

  66. Kullman L (2005) Wind-conditioned 20th century decline of birch treeline vegetation in the Swedish Scandes. Arctic 58(3): 286. https://doi.org/10.14430/arctic430

    Google Scholar 

  67. Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95(1): 41–52. https://doi.org/10.1111/j.1365-2745.2006.01190.x

    Article  Google Scholar 

  68. Linderholm HW (2006) Growing season changes in the last century. Forest Meteorol 137(1): 1–14. https://doi.org/10.1016/j.agrformet.2006.03.006

    Article  Google Scholar 

  69. Lloyd A, Fastie C (2002) Spatial and Temporal Variability in the Growth and Climate Response of Treeline Trees in Alaska. Climatic Change 52(4): 481–509. https://doi.org/10.1023/A:1014278819094

    Article  Google Scholar 

  70. Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86(7): 1687–1695.

    Article  Google Scholar 

  71. Lloyd AH, Graumlich LJ (1997) Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78(4): 1199–1210. https://doi.org/10.1890/0012-9658(1997)078[1199:HDOTFI]2.0.CO2

    Article  Google Scholar 

  72. Lund M, Falk JM, Friborg T, et al. (2012) Trends in CO 2 exchange in a high Arctic tundra heath, 2000–2010. J Geophys Res Biogeo 117(G2) https://doi.org/10.1029/2011JG001901

    Google Scholar 

  73. Mamet SD, Kershaw GP (2012) Subarctic and alpine tree line dynamics during the last 400 years in north - western and central Canada. J Biogeogr 39(5): 855–868. https://doi.org/10.1111/j.1365-2699.2011.02642.x

    Article  Google Scholar 

  74. McGlone MS, Wilmshurst JM, Richardson SJ, et al. (2019) Temperature, Wind, Cloud, and the Postglacial Tree Line History of Sub-Antarctic Campbell Island. Forests 10(11): 998. https://doi.org/10.3390/f10110998

    Article  Google Scholar 

  75. Moen J, Aune K, Edenius L, et al. (2004) Potential Effects of Climate Change on Treeline Position in the Swedish Mountains. Ecol Soc 9(1). https://doi.org/10.5751/ES-00634-090116

    Google Scholar 

  76. Natali SM, Schuur EAG, Mauritz M, et al. (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeo 120(3): 525–537. https://doi.org/10.1002/2014JG002872

    Article  Google Scholar 

  77. Nicklen EF, Roland CA, Ruess RW, et al. (2016) Local site conditions drive climate—growth responses of Picea mariana and Picea glauca in interior Alaska. Ecosphere 7(10). https://doi.org/10.1002/ecs2.1507

    Google Scholar 

  78. Nogués-Bravo D, Araújo MB, Errea MP, et al. (2007) Exposure of global mountain systems to climate warming during the 21st Century. Global Environ Chang 17(3): 420–428. https://doi.org/10.1016/j.gloenvcha.2006.11.007

    Article  Google Scholar 

  79. Oberbauer SF, Elmendorf SC, Troxler TG, et al. (2013) Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Phil Trans R Soc B 368(20120481). https://doi.org/10.1098/rstb.2012.0481

    Google Scholar 

  80. Öberg L, Kullman L (2012) Contrasting short-term performance of mountain birch (Betula pubescens ssp. czerepanovii) treeline along a latitudinal continentality-maritimity gradient in the southern Swedish Scandes. Fennia - Int J Geogr 190(1): 19.

    Google Scholar 

  81. Öberg L, Kullman L (2012) Contrasting short-term performance of mountain birch (Betula pubescens ssp. czerepanovii) treeline along a latitudinal continentality-maritimity gradient in the southern Swedish Scandes. Fennia-Int J Geogr 190(1): 19–40.

    Google Scholar 

  82. Parker TC, Subke JA, Wookey PA (2015) Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob Change Biol 21(5): 2070–2081. https://doi.org/10.1111/gcb.12793

    Article  Google Scholar 

  83. Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alpine Bot 124(1): 1–12. https://doi.org/10.1007/s00035-014-0124-0

    Article  Google Scholar 

  84. Paulsen J, Weber UM (2000) Tree Growth near Treeline: Abrupt or Gradual Reduction with Altitude? Arctic, Antarctic, and Alpine Research 32(1): 14–20. https://doi.org/10.2307/1552405

    Article  Google Scholar 

  85. Pearson RG, Phillips SJ, Loranty MM, et al. (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3(7): 673. https://doi.org/10.1038/nclimate1858

    Article  Google Scholar 

  86. Pecl GT, Araújo MB, Bell JD, et al. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 35(6332): 1. https://doi.org/10.1126/science.aai9214

    Google Scholar 

  87. Qian H, Joseph R, Zeng N (2010) Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob Change Biol 16(2): 641–656. https://doi.org/10.1111/j.1365-2486.2009.01989.x

    Article  Google Scholar 

  88. Salmon VG, Soucy P, Mauritz M, et al. (2016) Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob Change Biol 22(5): 1927–1941. https://doi.org/10.1111/gcb.13204

    Article  Google Scholar 

  89. Salzer MW, Bunn AG, Graham NE, et al. (2013) Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim Dynam 42(5–6): 1517–1526. https://doi.org/10.1007/s00382-013-1911-9

    Google Scholar 

  90. Schmid S, Zierl B, Bugmann H (2006) Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements. Reg Environ Change 6(4): 167–180. https://doi.org/10.1007/s10113-006-0017-x

    Article  Google Scholar 

  91. Shiyatov S, Terent’ev M, Fomin V (2005) Spatiotemporal dynamics of forest-tundra communities in the polar urals. Russ J Ecol+ 36(2): 69–75. https://doi.org/10.1007/s11184-005-0051-9

    Article  Google Scholar 

  92. Sitch S, McGuire AD, Kimball J, et al. (2007) Assessing the Carbon Balance of Circumpolar Arctic Tundra Using Remote Sensing and Process Modeling. Ecol Appl 17(1): 213–234. https://doi.org/10.1890/1051-0761(2007)017[0213:ATCBOC]2.0.CO;2

    Article  Google Scholar 

  93. Sørensen MV, Strimbeck R, Nystuen KO, et al. (2017) Draining the Pool? Carbon Storage and Fluxes in Three Alpine Plant Communities. Ecosystems 21: 316–330. https://doi.org/10.1007/s10021-017-0158-4

    Article  Google Scholar 

  94. Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411(6837): 546–547.

    Article  Google Scholar 

  95. Svenning JC, Sandel B (2013) Disequilibrium vegetation dynamics under future climate change. Am J Bot 100(7): 1266–1286. https://doi.org/10.3732/ajb.1200469

    Article  Google Scholar 

  96. Tingstad L, Olsen S, Klanderud K, et al. (2015) Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone. Oecologia 179(2):599–608.https://doi.org/10.1007/s00442-015-3360-0

    Article  Google Scholar 

  97. Treml V, Chuman T (2015) Ecotonal Dynamics of the Altitudinal Forest Limit are Affected by Terrain and Vegetation Structure Variables: An Example from the Sudetes Mountains in Central Europe. Arct Antarct Alp Res 47(1): 133–146. https://doi.org/10.1657/AAAR0013-108

    Article  Google Scholar 

  98. Van Bogaert R, Haneca K, Hoogesteger J, et al. (2011) A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming.(Report). J Biogeogr 38(5): 907. https://doi.org/10.1111/j.1365-2699.2010.02453.x

    Article  Google Scholar 

  99. Vittoz P, Rulence B, Largey T, et al. (2008) Effects of Climate and Land-Use Change on the Establishment and Growth of Cembran Pine (Pinus cembra L.) over the Altitudinal Treeline Ecotone in the Central Swiss Alps. Arct Antarct Alp Res 40(1): 225–232. https://doi.org/10.1657/1523-0430(06-010)[VITTOZ]2.0.CO;2

    Article  Google Scholar 

  100. Walker MD, Wahren CH, Hollister RD, et al. (2006) Plant community responses to experimental warming across the tundra biome. P Natl Acad Sci USA 103(5): 1342. https://doi.org/10.1073/pnas.0503198103

    Article  Google Scholar 

  101. Wallentin G, Tappeiner U, Strobl J, et al. (2008) Understanding alpine tree line dynamics: An individual-based model. Ecol Model 218(3–4): 235–246. https://doi.org/10.1016/j.ecolmodel.2008.07.005

    Article  Google Scholar 

  102. Wania R, Ross I, Prentice IC (2009) Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Glob Biogeochem Cy 23(3) https://doi.org/10.1029/2008GB003412

    Google Scholar 

  103. Ward A, (2016). The extent and value of carbon stored in mountain grasslands and shrublands globally, and the prospects for using climate finance to address natural resource management issues. PhD Thesis, University ofQueensland. https://doi.org/10.14264/uql.2016.571

    Book  Google Scholar 

  104. Warszawski L, Friend A, Ostberg S, et al. (2013) A multi-model analysis of risk of ecosystem shifts under climate change. Environ Res Lett 8(4): 1–10. https://doi.org/10.1088/1748-9326/8/4/044018

    Article  Google Scholar 

  105. Weih M, Karlsson PS (2002) Low Winter Soil Temperature Affects Summertime Nutrient Uptake Capacity and Growth Rate of Mountain Birch Seedlings in the Subarctic, Swedisn Lapland. Arct Antarct Alp Res 34(4): 434–439. 1 https://doi.org/0.1080/15230430.2002.12003514

    Article  Google Scholar 

  106. Wilmking M, Harden J, Tape K (2006) Effect of tree line advance on carbon storage in NW Alaska. J Geophys Res: Biogeo 111(G2). https://doi.org/10.1029/2005JG000074

    Google Scholar 

  107. Wilmking M, Juday GP (2005) Longitudinal variation of radial growth at Alaska’s northern treeline—recent changes and possible scenarios for the 21st century. Global Planet Change 47(2): 282–300.https://doi.org/10.1016/j.gloplacha.2004.10.017

    Article  Google Scholar 

  108. Wilmking M, Juday GP, Barber VA, et al. (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10(10): 1724–1736. https://doi.org/10.1111/j.1365-2486.2004.00826.x

    Article  Google Scholar 

  109. Wilmking M, Sanders T, Zhang Y, et al. (2012) Effects of Climate, Site Conditions, and Seed Quality on Recent Treeline Dynamics in NW Russia: Permafrost and Lack of Reproductive Success Hamper Treeline Advance? Ecosystems 15(7): 1053–1064. https://doi.org/10.1007/s10021-012-9565-8

    Article  Google Scholar 

  110. Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94(1): 105–121. https://doi.org/10.1007/s10584-009-9546-x

    Article  Google Scholar 

  111. Woodward C, Shulmeister J, Larsen J, et al. (2014) The hydrological legacy of deforestation on global wetlands. Science 346(6211): 844–847. https://doi.org/10.1126/science.1260510

    Article  Google Scholar 

  112. Zhang W, Liu P, Feng Q, et al. (2018) The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015. J Geogr Sci 28(5): 579–594. https://doi.org/10.1007/s11442-018-1492-y

    Article  Google Scholar 

  113. Zhang W, Miller P, Smith B, et al. (2013) Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ Res Lett 8(3). https://doi.org/10.1088/1748-9326/8/3/034023

    Google Scholar 

  114. Ziegler SE, Benner R, Billings SA, et al. (2017) Climate Warming Can Accelerate Carbon Fluxes without Changing Soil Carbon Stocks. Front in Earth Sci 5. https://doi.org/10.3389/feart.2017.00002

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amanda Hansson.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hansson, A., Dargusch, P. & Shulmeister, J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 18, 291–306 (2021). https://doi.org/10.1007/s11629-020-6221-1

Download citation

Keywords

  • Treeline advance
  • Treeline migration
  • Forest dynamics
  • Alpine forests
  • Ecosystem carbon storage
  • Carbon sequestration
  • Global meta-analysis