Skip to main content

Tectonic control on slow-moving Andean landslides in the Colca Valley, Peru

Abstract

The Colca Valley in the Central Andes is a region characterized by the occurrence of large slow-moving landslides and a high level of seismic activity. In this study, we aimed to determine passive and active tectonic control on the formation of selected five large landslides in the Colca Valley and to assess geohazard associated with these features. For that purpose, we performed a post-landslide field survey, applied remote sensing techniques, and obtained eyewitness accounts. Recently, the need to understand mass movement processes in this region is even higher due to the establishment of the Colca y Volcanes de Andagua Geopark (Colca and Andagua Volcanoes Geopark). Our results suggest that the studied landslides usually represent a complex failure mechanism, dominated by translational sliding or rotational displacements, commonly associated with the formation of horst-and-graben like structures. We found a spatial correlation between the distribution of landslides and inherited fault network. The head scarps appear to be limited by the WNW- to NW-striking faults, whereas the lateral extent of some of the reported features seems to be connected with the NNE-striking normal faults, common in both, the Mesozoic strata and the Pleistocene-Holocene deposits.

References

  1. Antayhua Y, Tavera H, Bernal I, et al. (2002) Localizacion hipocentral y caracteristicas de la fuente de los sismos de Maca (1991), Sepina (1992) y Cabanaconde (1998), Región del Volcán Sabancaya (Arequipa). Boletín de la Sociedad Geológica del Perú 93: 63–72. (In Spanish).

    Google Scholar 

  2. Benavente CL, Delgado GF, García Fernández Baca B, et al. (2017) Neotectónica, evolución del relieve y peligro sísmico en la región Arequipa. INGEMMET, Boletín, Serie C: Geodinámica e Ingeniería Geológica 64: 370. (In Spanish).

    Google Scholar 

  3. Bontemps N, Lacroix P, Doin MP (2018) Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sensing of Environment 210: 144–158. https://doi.org/10.1016/j.rse.2018.02.023

    Google Scholar 

  4. Bontemps N, Lacroix P, Larose E, et al. (2020) Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nature Communications 11: 780. https://doi.org/10.1038/s41467-020-14445-3

    Google Scholar 

  5. Buckham RC, Coe JA, Chavarría MM, et al. (2001) Landslides triggered by hurricane Mitch in Guatemala—Inventory and discussion. USGS, Denver, CO.

    Google Scholar 

  6. Bulmer MH, Johnston A, Engle FC, et al. (1999) Seismically triggered slope failures in the Colca Valley, Southern Peru. EOS, Transactions American Geophysical Union H41A-07: 1–127.

    Google Scholar 

  7. Cannon SH, Haller KM, Ekstrom I, et al. (2001) Landslide response to Hurricane Mitch rainfall in seven study areas in Nicaragua. USGS, Denver, CO.

    Google Scholar 

  8. Carlini M, Chelli A, Vescovi P, et al. (2016) Tectonic control on the development and distribution of large landslides in the Northern Apennines (Italy). Geomorphology 253: 425–437. https://doi.org/10.1016/j.geomorph.2015.10.028

    Google Scholar 

  9. Chlieh M, Perfettini H, Tavera H, et al. (2011) Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research 116: B12405. https://doi.org/10.1029/2010JB008166

    Google Scholar 

  10. Delgado F, Zerathe S, Audin L, et al. (2019) Giant landslide triggerings and paleoprecipitations in the Central Western Andes: the Aricota rockslide dam (South Peru). Geomorphology 106932. https://doi.org/10.1016/j.geomorph.2019.106932

  11. Evans SG, Roberts NJ, Ischuk A, et al. (2009) Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Engineering Geology 109: 195–212. https://doi.org/10.1016/j.enggeo.2009.08.007

    Google Scholar 

  12. Farías M, Comte D, Roecker S, et al. (2011) Crustal extensional faulting triggered by the 2010 Chilean earthquake: The Pichilemu Seismic Sequence. Tectonics 30: TC6010. https://doi.org/10.1029/2011TC002888

    Google Scholar 

  13. Farr TG, Kobrick M (2000) Shuttle Radar Topography Mission produces a wealth of data. Eos, Transactions, American Geophysical Union 81: 583–585.

    Google Scholar 

  14. Gaidzik K, Ramírez-Herrera MT, Bunn M, et al. (2017) Landslide manual and automated inventories, and susceptibility mapping using LIDAR in the forested mountains of Guerrero, Mexico. Geomatics, Natural Hazards and Risk: 1–26. https://doi.org/10.1080/19475705.2017.1292560

  15. Gómez AJC, Macías JL, Siebe C, et al. (2004) Debris avalanche deposit of Hualca Hualca Volcano and the formation of a volcanic dam in the Colca Valley, Arequipa - Peru. In: Aguirre G et al. (eds.) Neogene-Quaternary continental margin volcanism. Proceedings of the GSA Penrose Conference at Metepec, Mexico. p 26.

  16. Gomez JC, Audemard F, Quijano J (2002) Efectos geologicos asociados al sismo del 23 de junio del 2001 en el sur del Peru, in Terremoto de la region sur del Peru del 23 Junio de 2001. Sociedad Geologica del Peru: 159–174. (In Spanish).

  17. Gorum T, Fan X, van Westen CJ, et al. (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133: 152–167. https://doi.org/10.1016/j.geomorph.2010.12.030

    Google Scholar 

  18. Guillande R, Salas G (1995) Geomorphological and geological survey and pot remote sensing of the current activity of Nevado Sabancaya stratovolcano (south Peru): assessment for hazard-zone mapping. Z. Geomorph. N.F. 39: 515–535.

    Google Scholar 

  19. Guzzetti F, Ardizzone F, Cardinali M, et al. (2008) Distribution of landslides in the upper Tiber River basin, Central Italy. Geomorphology 96: 105–122. https://doi.org/10.1016/j.geomorph.2007.07.015

    Google Scholar 

  20. Harp EL, Hagaman KW, Held MD, et al. (2002) Digital inventory of landslides and related deposits in Honduras triggered by Hurricane Mitch. USGS, Denver, CO.

    Google Scholar 

  21. Hsü JT (1992) Quaternary uplift of the Peruvian coast to the subduction of the Nazca Ridge: 15.5 to 15.6 degrees south latitude. Quaternary International 15–16: 87–97.

    Google Scholar 

  22. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types — an update. Landslides, 11, 167–194.

    Google Scholar 

  23. Jacay J, Sempéré T, Husson L, et al. (2002) Structural Characteristics of the Incapuquio Fault System, Southern Peru. In: 5th ISAG, Toulouse, France, Extended Abstracts. pp 319–321.

  24. Kargel JS, Leonard GJ, Shugar DH, et al. (2015) Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351. https://doi.org/10.1126/science.aac8353

  25. Keefer DK (1984) Landslides caused by earthquakes. Geological Society of America Bulletin 95: 406–421.

    Google Scholar 

  26. Kukulak J, Paulo A, Kalicki T (2016) Lithology of lacustrine deposits in the Colca Valley. Journal of South American Earth Sciences 69: 152–170. https://doi.org/10.1016/j.jsames.2016.03.008

    Google Scholar 

  27. Lacroix P, Berthier E, Taipe E (2015) Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sensing of Environment 165: 148–158. https://doi.org/10.1016/j.rse.2015.05.010

    Google Scholar 

  28. Lacroix P, Dehecq A, Taipe E (2019) Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nature Geoscience. https://doi.org/10.1038/s41561-019-0500-x

  29. Lacroix P, Perfettini H, Taipe E, et al. (2014) Coseismic and postseismic motion of a landslide: observations, modeling, and analogy with tectonic faults. Geophysical Research Letters 41: 6676–6680. https://doi.org/10.1002/2014GL061170

    Google Scholar 

  30. Lacroix P, Zavala B, Berthier E, et al. (2013) Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0). Remote Sensing 5: 2590–2616. https://doi.org/10.3390/rs5062590

    Google Scholar 

  31. Larsen MC, Torres-Sanchez AJ (1992) Landslides triggered by hurricane Hugo in eastern Puerto Rico, September 1989. Caribbean Journal of Science 28: 113–125.

    Google Scholar 

  32. Malamud BD, Turcotte DL, Guzzetti F, et al. (2004) Landslide inventories and their statistical properties. Earth Surface Processes and Landforms 29: 687–711. https://doi.org/10.1002/esp.1064

    Google Scholar 

  33. Marui H, Nadim F (2009) Landslides and Multi-Hazards. Landslides - Disaster Risk Reduction, pp.435–450.

  34. Mégard F, Dalmayrac B, Laubacher G, et al. (1971) La chaine hercynienne au Pérou et en Bolivie. Premiérs résultats. Cahiers - ORSTOM, série Géologie 3: 5–44.

    Google Scholar 

  35. Moro M, Chini M, Saroli M, et al. (2011) Analysis of large, seismically induced, gravitational deformations imaged by high-resolution COSMO-SkyMed synthetic aperture radar. Geology 39: 527–530. https://doi.org/10.1130/G31748.1

    Google Scholar 

  36. Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15: 139–159.

    Google Scholar 

  37. Ocola L, Gómez AJC (2005) Peligro geologico potencial del Valle del Colca sector medio: metodologia y aplicacion. Instituto Geofisico del Peru, Lima (In Spanish).

  38. Palmer J (2017) Creeping earth could hold secret to deadly landslides. Nature 548: 384–386. https://doi.org/10.1038/548384a

    Google Scholar 

  39. Petley D (2012) Global patterns of loss of life from landslides. Geology 4010: 927–930. https://doi.org/10.1130/G33217.1

    Google Scholar 

  40. Pfiffner OA, Gonzalez L (2013) Mesozoic-Cenozoic evolution of the western margin of South America: Case study of the Peruvian Andes. Geosciences 3(2): 262–310. https://doi.org/10.3390/geosciences3020262

    Google Scholar 

  41. Ramírez-Herrera MT, Gaidzik K (2017) La Pintada landslide—A complex double-staged extreme event, Guerrero, Mexico. Cogent Geoscience 3(1): 1356012. https://doi.org/10.1080/23312041.2017.1356012

    Google Scholar 

  42. Ramos R, Antayhua Y (2011) Sismicidad en la Región del volcán Sabancaya (Arequipa), periodo 2009–2010. INGEMMET Informe Técnico, A6567. p 50. Available online at: http://ovi.ingemmet.gob.pe/portal_volcan/docus/publicaciones/sabancaya/3/untitled73/index.html (Accessed on 10.11.2017) (In Spanish).

  43. Resources Observation and Science (EROS) Center (2017) https://earthexplorer.usgs.gov/ (accessed on 21.06.2017).

  44. Samia J, Temme A, Bregt A, et al. (2017) Do landslides follow landslides? Insights in path dependency from a multitemporal landslide inventory. Landslides 14: 547–558. https://doi.org/10.1007/s10346-016-0739-x

    Google Scholar 

  45. Sébrier M, Lavena A, Fornari M, et al. (1988) Tectonics and uplift in Central Andes (Peru, Bolivia and Northern Chile) from Eocene to present. Géodynamique 3: 85–106.

    Google Scholar 

  46. Sébrier M, Mercier J, Megard F, et al. (1985) Quaternary normal and reverse faulting and the state of stress in the central Andes of Perú. Tectonics 4: 895–928.

    Google Scholar 

  47. Shirzaei M, Bürgmann R, Oncken O, et al. (2012) Response of forearc crustal faults to the megathrust earthquake cycle: InSAR evidence from Mejillones Peninsula, Northern Chile. Earth and Planetary Science Letters 333: 157–164. https://doi.org/10.1016/j.epsl.2012.04.001

    Google Scholar 

  48. Tanyaş H, Westen CJ, Allstadt KE, et al. (2017) Presentation and Analysis of a Worldwide Database of Earthquake Induced Landslide Inventories. Journal of Geophysical Research, Earth Surface 122: 1991–2015. https://doi.org/10.1002/2017JF004236

    Google Scholar 

  49. Tavera H, Buforn E, Bernal I. et al. (2002) The Arequipa (Peru) earthquake of June 23, 2001. Journal of Seismology 6: 279–283. https://doi.org/10.1023/A:1015698621075

    Google Scholar 

  50. Tavera H, Guzman J, Velarde L, et al. (2016) Sismo de Ichupampa del 14 de Agosto del 2016 (5.3 ML), Aspectos Sismológicos. Centro Nacional de Monitoreo Sísmico - Acelerométrico, Instituto Geofísico del Perú, Lima, 16 p (In Spanish).

    Google Scholar 

  51. Tavera H, Martinez J, Fernandez E, et al. (2013) Sismo de Huambo-Cabanaconde (Arequipa) del 17 de Julio, 2013 (5.7 ML), Aspectos Sismológicos. Dirección de Sismología, Instituto Geofísico del Perú, Lima, p. 30 (In Spanish).

    Google Scholar 

  52. Thouret JC, Wörner G, Gunnell Y, et al. (2007) Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the Central Andes in Peru. Earth and Planetary Science Letters 263(3–4): 151–166. https://doi.org/10.1016/j.epsl.2007.07.023

    Google Scholar 

  53. Toda S, Tsutsumi H (2013) Simultaneous Reactivation of Two, Subparallel, Inland Normal Faults during the Mw 6.6 11 April 2011 Iwaki Earthquake Triggered by the Mw 9.0 Tohokuoki, Japan, Earthquake. Bulletin of the Seismological Society of America 103: 1584–1602. https://doi.org/10.1785/0120120281

    Google Scholar 

  54. Torres D, Muñoz L (2009) Mapa Geológico del Cuadrángulo de Chivay, 32-s-IV, 1:50000. Ingemmet, Lima, Peru (In Spanish).

  55. USGS Earthquake Database (2019) Available online at: https://earthquake.usgs.gov/earthquakes/search (accessed on 17.11.2019).

  56. Villegas-Lanza JC, Chlieh M, Cavalié O, et al. (2016) Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research, Solid Earth 121(10): 7371–7394. https://doi.org/10.1002/2016JB013080

    Google Scholar 

  57. Volcanic Observatory in Arequipa (2017) https://ovi.ingemmet.gob.pe (accessed on 17.11.2017).

  58. Wang HB, Sassa K, Xu WY (2007) Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan. Nature Hazards 41: 43–60. https://doi.org/10.1007/s11069-006-9009-x

    Google Scholar 

  59. Wolter A, Gischig V, Stead D, et al. (2016) Investigation of Geomorphic and Seismic Effects on the 1959 Madison Canyon, Montana, Landslide Using an Integrated Field, Engineering Geomorphology Mapping, and Numerical Modelling Approach. Rock Mechanics and Rock Engineering 49: 2479–2501. https://doi.org/10.1007/s00603-015-0889-5

    Google Scholar 

  60. Wu C, Qiao J (2009) Relationship between landslides and lithology in the Three Gorges Reservoir area based on GIS and information value model. Frontiers of Forestry in China 4: 165–170. https://doi.org/10.1007/s11461-009-0030-6

    Google Scholar 

  61. Żaba J, Małolepszy Z (2008) Landslide hazard related to tectonic activity in the Rio Colca Valley, Peru. Problems of the environmental resources managment. Mineral Resources Managment 24: 117–134 (In Polish).

    Google Scholar 

  62. Żaba J, Małolepszy Z, Gaidzik K, et al. (2012) Fault network in Rio Colca Valley between Maca and Pinchollo, Central Andes, Southern Peru. Annales Socieatis Geologorum Polonae 82: 279–290.

    Google Scholar 

  63. Zavala B, Mariño J, Lacroix P, et al. (2013) Evaluacion de la seguridad fisica del distrito de Maca, Estudio geologicos, geofisicos y monitoreo de movimientos en masa, Informe Tecnico No. A6628. INGEMMET-IRD-IGP Publications, Lima (In Spanish).

    Google Scholar 

  64. Zerathe S, Lacroix P, Jongmans D, et al. (2016) Morphology, structure and kinematics of a rainfall controlled slow-moving Andean landslide, Peru. Earth Surface Processes and Landforms 41: 1477–1493. https://doi.org/10.1002/esp.3913

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the members of Polish Scientific Expeditions to Peru, especially Zbigniew Małolepszy for help in the field. We thank the editor and the two anonymous reviewers for providing comments and suggestions that helped to improve our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Gaidzik.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaidzik, K., Żaba, J. & Ciesielczuk, J. Tectonic control on slow-moving Andean landslides in the Colca Valley, Peru. J. Mt. Sci. 17, 1807–1825 (2020). https://doi.org/10.1007/s11629-020-6099-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-020-6099-y

Keywords

  • Landslide
  • Geohazard
  • Tectonic activity
  • Earthquake
  • Central Andes
  • Peru