Skip to main content
Log in

Assessing land use/land cover change impacts on the hydrology of Nyong River Basin, Cameroon

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Uncontrolled land use land cover change (LULCC) is impacting watershed hydrology, particularly in tropical watersheds in developing countries. We assessed the extent of LULCC in the southern portion of the Nyong River basin through analysis of three land use maps in 1987, 2000 and 2014. LULCC impact on hydrological variables of the Mbalmayo, Olama, Pont So’o, Messam, and Nsimi sub-watersheds of the southern portion of the Nyong River basin were evaluated by using the linear regression modeling and the Mann-Kendall test. This study reveals that dense forest cover decreased by 16%, young secondary forest increased by 18%, agricultural/cropland increased by 10%, and built-up area/bare soil increased by 3% from 1987 to 2014. The decrease in dense forest cover at 0.6% per year on average was driven by indiscriminate expansion of subsistence agricultural/cropland through shifting and fallow cultivation farming systems. Nonsignificant trends in total discharge, high flows, and low flows were observed in the large sub-watersheds of Mbalmayo and Olama from 1998 to 2013 with LULCC within the watershed. In contrast, significant decreasing trends in stream discharge (up to −5.1% and −5.9%), and significant increasing trends in high flows (up to 2.1% and 6.3%), respectively, were observed in the small sub-watersheds of Pont So’o and Messam from 1998 to 2013, particularly with increase in agricultural/cropland cover and decrease in dense forest cover. However, we found non-significant trends in mean annual discharge and low flows for all and whole watershed with LULCC. The results reveal spatially varying trends of stream discharge, low flows and high flows among the sub-watersheds with LULCC within the study watershed. The results suggest that the impacts of LULCC on watershed hydrology are easily detected in small sub-watersheds than in large sub-watersheds. Therefore, the magnitude of dense forest cover loss must be significantly greater than 16% to cause significant changes and common trends in the hydrology of the sub-watersheds of the southern portion of the Nyong River basin. The Mann-Kendall and Regression approaches show appreciable potential for modelling the impacts of LULCC on the hydrology of the southern portion of the Nyong River basin and for informing forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Acknowledgement

The authors are deeply grateful to the Observatory for Environment Research (ORE) in the project “Experimental Tropical Watersheds” (SO BVET) funded by IRD, INSU, and OMP for making available the hydrological and climatic data of the Nyong River basin under open access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Ewane Ewane.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewane, B.E., Lee, H.H. Assessing land use/land cover change impacts on the hydrology of Nyong River Basin, Cameroon. J. Mt. Sci. 17, 50–67 (2020). https://doi.org/10.1007/s11629-019-5611-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-019-5611-8

Keywords

Navigation