Land use scenario simulation of mountainous districts based on Dinamica EGO model

Abstract

Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beijing and significant land use changes have taken place since 2004. With the combination of GIS and Dinamica EGO (Environment for Geoprocessing Objects) model, the quantitative structure and spatial distribution of land use in Mentougou from 2006 to 2014 are analyzed in this paper. Considering topography has influence on the action mode of driving factors, the research area is divided into two parts based on elevation, mountainous area above 300 m, plain and shallow mountainous area below 300 m. Based on cellular automata theory, the probability of land use change is calculated by Weights of Evidence method and the spatial distribution of land use is simulated by means of two complementary spatial transition functions: Expander and Patcher. Land use pattern of Menougou in 2030 for three kinds of scenarios: trend development, rapid development and ecological protection are simulated. The comparison shows that the trend development scenario is more reasonable based on social, economic and environmental considerations and other scenarios provide a reference for improving irrational land use.

This is a preview of subscription content, access via your institution.

References

  1. Agterberg FP (1992) Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources 1(1): 39–50. https://doi.org/10.1007/BF01782111

    Google Scholar 

  2. Agterberg FP, Cheng QM (2002) Conditional independence test for weights-of-evidence modeling. Natural Resources Research 11(4): 249–255. https://doi.org/10.1023/A:1021193827501

    Google Scholar 

  3. Ahmed S, Bramley G (2015) How will Dhaka grow spatially in future?—Modelling its urban growth with a near-future planning scenario perspective. International Journal of Sustainable Built Environment 4(2): 359–377. https://doi.org/10.1016/j.ijsbe.2015.07.003

    Google Scholar 

  4. Berberoğlu S, Akın A, Clarke KC (2016) Cellular automata modeling approaches to forecast urban growth for adana, Turkey: a comparative approach. Landscape & Urban Planning 153: 11–27. https://doi.org/10.1016/j.landurbplan.2016.04.017

    Google Scholar 

  5. Bonham-Carter GF (1994) Geographic Information Systems for Geoscientists: Modelling with GIS. Pergamon, New York, USA.

    Google Scholar 

  6. Bürgi M (1999) A case study of forest change in the Swiss lowlands. Landscape Ecology 14(6):567–576. https://doi.org/10.1023/A:1008168209725

    Google Scholar 

  7. Camacho-Sanabria JM, Juan-Pérez JI, Pineda-Jaimes NB (2015) Modeling of land use/cover changes: prospective scenarios in the Estado de Mexico. Case study-Amanalco de Becerra. RevistaChapingo. SerieCienciasForestales y delAmbiente 21(2): 203–220. https://doi.org/10.5154/r.rchscfa.2014.10.049

    Google Scholar 

  8. Carranza EJM (2004) Weights of evidence modeling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research 13(3): 173–187. https://doi.org/10.1023/B:NARR.0000046919.87758.f5

    Google Scholar 

  9. Castella JC, Verburg PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modeling 202(3–4): 410–420. https://doi.org/10.1016/j.ecolmodel.2006.11.011

    Google Scholar 

  10. Chadid M, Dávalos L, Molina J, et al. (2015) A Bayesian spatial model highlights distinct dynamics in deforestation from coca and pastures in an Andean biodiversity hotspot. Forests 6(11): 3828–3846. https://doi.org/10.3390/f6113828

    Google Scholar 

  11. Cheng LL, Liu TT, Yang LL, et al. (2018) Development and utilization of models and strategies of mining wasteland in the background of industrial transformation: taking Mentougou district as an example. China Mining Magazine 27(07): 70–74+80. https://doi.org/10.12075/j.issn.1004-4051.2018.07.013

    Google Scholar 

  12. Duan XD, Wang CR, Liu XD (2012) Cellular Automata Theory Research and Simulation Applications. Beijing Science Press, Beijing, China. (In Chinese)

    Google Scholar 

  13. Farina A (1998) Principles and Methods in Landscape Ecology. Chapman & Hall, London, UK

    Google Scholar 

  14. Feng Y (2017) Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules. International Journal of Geographical Information Systems 31(6): 1198–1219. https://doi.org/10.1080/13658816.2017.1287368

    Google Scholar 

  15. Ferreira BM, Soares-Filho BS, Pereira FMQ (2015) The dinamica virtual machine for geosciences. Brazilian Symposium on Programming Languages. Springer, Cham. pp 44–58.

    Google Scholar 

  16. Filatova T, Voinov A, van der Veen A (2011) Land market mechanisms for preservation of space for coastal ecosystems: an agent-based analysis. Environmental Modelling & Software 26(2): 179–190. https://doi.org/10.1016/j.envsoft.2010.08.001

    Google Scholar 

  17. Gago-silva A, Ray N, Lehmann A (2017) Spatial dynamic modelling of future scenarios of land use change in Vaud and Valais, Western Switzerland. ISPRS International Journal of Geo-Information 6(4): 115. https://doi.org/10.3390/ijgi6040115

    Google Scholar 

  18. Gao ZQ, Yi W (2012) Land use change in China and analysis of its driving forces using CLUE-S and Dinamica EGO model Chinese Society of agricultural Engineering 28(16): 208–216. https://doi.org/10.3969/j.issn.1002-6819.2012.16.033

    Google Scholar 

  19. Godoy MMG, Soares-Filho BS (2008) Modelling intra-urban dynamics in the Savassineigh-bourhood, Belo Horizonte city, Brazil. In: Paegelow M, Camacho Olmedo MT (eds) Modelling environmental dynamics. Springer, Berlin. pp 319–338.

    Google Scholar 

  20. Geist H, McConnell W, Lambin EF et al. (2006) Causes and Trajectories of Land-Use/Cover Change. In: Lambin EF, Geist H (eds.), Land-Use and Land-Cover Change. Global Change. Springer, Berlin, Germany. pp 41–47.

    Google Scholar 

  21. Gellrich M, Baur P, Koch B, Zimmermann NE (2007) Agricultural land abandonment and natural forest re-growth in the Swiss mountains: a spatially explicit economic analysis. Agriculture, Ecosystems & Environment 118(1–4): 93–108. https://doi.org/10.1016/j.agee.2006.05.001

    Google Scholar 

  22. Guo J, Ou MH, Liu Q, Ou WX (2009) Construction land demand forecast in Nantong city based on BP neural network. Resources Science 31(8): 1355–1361. https://doi.org/10.3321/j.issn:1007-7588.2009.08.014

    Google Scholar 

  23. Kamusoko C, Gamba J (2015) Simulating urban growth using a random forest-cellular automata (RF-CA) model. ISPRS International Journal of Geo-Information 4(2): 447–470. https://doi.org/10.3390/ijgi4020447

    Google Scholar 

  24. Han HR, Yang CF, Song JP (2015) Simulation and projection of land-use change in Beijing under different scenarios. Progress In Geography 34(08): 976–986. https://doi.org/10.18306/dlkxjz.2015.08.005

    Google Scholar 

  25. Hu ZN, Li X, Lou SY, Kang JR (2017) Multi-scenario simulation of land use structure of Yangzhou City based on systems dynamics mode. Bulletin of Soil and Water Conservation 37(04): 211–218. https://doi.org/10.13961/j.cnki.stbctb.2017.04.036

    Google Scholar 

  26. Huang GP (2017) Modeling urban spatial growth in mountainous regions of Western China. Mountain Research and Development 37(3): 367–376. https://doi.org/10.1659/MRD-JOURNAL-D-16-00078.1

    Google Scholar 

  27. Huddleston B, Ataman E, d’Ostiani LF (2003) Towards a GIS Based Analysis of Mountain Environment and Population. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  28. Li BJ, Gu HH, Ji YZ (2018) Simulation of land use change in coal mining area under different scenarios based on the CLUE-S model: a case study of Jiawang mining area in Xuzou city. Tropical Geography 38(2): 274–281. https://doi.org/10.13284/j.cnki.rddl.003029

    Google Scholar 

  29. Maeda EE, Pellikka PKE, Siljander M, Clark BJ (2010) Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya. Geomorphology 123(3–4): 279–289. https://doi.org/10.1016/j.geomorph.2010.07.019

    Google Scholar 

  30. Maeda EE, De Almeida CM, de Carvalho Ximenes A, et al. (2011) Dynamic modeling of forest conversion: Simulation of past and future scenarios of rural activities expansion in the fringes of the Xingu National Park, Brazilian Amazon. International Journal of Applied Earth Observation and Geoinformation 13(3): 435–446. https://doi.org/10.1016/j.jag.2010.09.008

    Google Scholar 

  31. Maithani S, Begum A, Kumar P, Kumar AS (2018) Simulation of peri-urban growth dynamics using weights of evidence approach. Geocarto International 33(9): 957–976. https://doi.org/10.1080/10106049.2017.1319425

    Google Scholar 

  32. Mancosu E, Gago-Silva A, Barbosa A, et al. (2015) Future land-use change scenarios for the Black Sea catchment. Environmental Science & Policy 46: 26–36. https://doi.org/10.1016/j.envsci.2014.02.008

    Google Scholar 

  33. Mas JF, Kolb M, Paegelow M, et al. (2014) Modelling Land use/cover changes: a comparison of conceptual approaches and softwares. Environmental Modelling Software 51: 94–111. https://doi.org/10.1016/j.envsoft.2013.09.010

    Google Scholar 

  34. Nigussie TA, Altunkaynak A (2017) Modeling urbanization of Istanbul under different scenarios using SLEUTH urban growth model. Journal of Urban Planning & Development 143: 04016037. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000369

    Google Scholar 

  35. Peng BF, Hu YL, Wu YF, Chen DL (2007) Scale forecast of urban construction land based on gray system model: a case study from Dingcheng district in Changde city. Economic Geography 27(6): 999–1002. https://doi.org/10.15957/j.cnki.jjdl.2007.06.014

    Google Scholar 

  36. Pe’er G, Zurita GA, Schober L et al. (2013). Simple process-based simulators for generating spatial patterns of habitat loss and fragmentation: a review and introduction to the G-RaFFe model. PLoS One 8(5): e64968. https://doi.org/10.1371/journal.pone.0064968

    Google Scholar 

  37. Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: aland transformation model. Computers Environment & Urban Systems 26(6): 553–575. https://doi.org/10.1016/S0198-9715(01)00015-1

    Google Scholar 

  38. Pontius RG (2001) Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing 67(5): 540–540. https://doi.org/10.1016/S0031-0182(00)00126-7

    Google Scholar 

  39. Rahman K, da Silva AG, Tejeda EM, et al. (2015) An independent and combined effect analysis of land use and climate change in the upper Rhone River watershed, Switzerland. Applied geography 63: 264–272. https://doi.org/10.1016/j.apgeog.2015.06.021

    Google Scholar 

  40. Rodrigues H, Soares-Filho B (2018) A Short Presentation of Dinamica EGO. In: Olmedo MTC et al. (eds.), Geomatic Approaches for Modeling Land Change Scenarios. Springer International Publishing AG, Cham, Switzerland. pp 493–498.

    Google Scholar 

  41. Rodríguez Eraso N, Armenteras-Pascual D, Alumbreros JR (2013) Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science 8(2): 154–174. https://doi.org/10.1080/1747423X.2011.650228

    Google Scholar 

  42. Roriz PAC, Yanai AM, Fearnside PM (2017) Deforestation and carbon loss in Southwest Amazonia: impact of Brazil’s revised forest code. Environmental management 60(3): 367–382. https://doi.org/10.1007/s00267-017-0879-3

    Google Scholar 

  43. Rutherford GN, Bebi P, Edwards PJ, Zimmermann NE (2008) Assessing land-use statistics to model land cover change in a mountainous landscape in the European Alps. Ecological Modeling 212(3–4): 460–471. https://doi.org/10.1016/j.ecolmodel.2007.10.050

    Google Scholar 

  44. Schneeberger N, Bürgi M, Hersperger AM et al. (2007) Driving forces and rates of landscape change as a promising combination for landscape change research—An application on the northern fringe of the Swiss Alps. Land Use Policy 24(2): 349–361. https://doi.org/10.1016/j.landusepol.2006.04.003

    Google Scholar 

  45. Serra P, Pons X, Saurí D (2008) Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Applied Geography 28(3): 189–209. https://doi.org/10.1016/j.apgeog.2008.02.001

    Google Scholar 

  46. Shehzad K, Qamer FM, Murthy MSR, et al. (2014) Deforestation trends and spatial modelling of its drivers in the dry temperate forests of northern Pakistan—a case study of Chitral. Journal of Mountain Science 11(5): 1192–1207. https://doi.org/10.1007/s11629-013-2932-x

    Google Scholar 

  47. Shi PJ, Dong HR, Pan JH (2012) Analysis on temporal-spatial changes of information entropy of land-use structure in Ganzhoudistrict. Chinese Journal of Soil Science 43(02): 263–268. https://doi.org/10.19336/j.cnki.trtb.2012.02.002

    Google Scholar 

  48. Silvestrini RA, Soares-Filho BS, Nepstad D et al. (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications 21(5): 1573–1590. https://doi.org/10.1890/10-0827.1

    Google Scholar 

  49. Soares-Filho BS, Nepstad DC, Curran LM, et al. (2006) Modeling conservation in the Amazon basin. Nature 440: 520e523. https://doi.org/10.1038/nature04389.

    Google Scholar 

  50. Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) Dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling 154(3):217–235. https://doi.org/10.1016/S0304-3800(02)00059-5

    Google Scholar 

  51. Soares-Filho BS, Rodrigues HO, Costa W (2009) Modeling environmental dynamics with Dinamica EGO. Available online at: https://doi.org/www.csr.ufmg.br/dinamica (Accessed on 7 August 2019)

  52. Stickler CM, Nepstad DC, Coe MT, et al. (2009) The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region. Global Change Biology 15(12): 2803–2824. https://doi.org/10.1111/j.1365-2486.2009.02109.x

    Google Scholar 

  53. Ullah S, Ahmad K, Sajjad RU, et al. (2019) Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. Journal of environmental management 245: 348–357. https://doi.org/10.1016/j.jenvman.2019.05.063

    Google Scholar 

  54. Vacquie LA, Houet T, Sohl TL, et al. (2015) Modelling regional land change scenarios to assess land abandonment and reforestation dynamics in the Pyrenees (France). Journal of Mountain Science 12(4): 905–920. https://doi.org/10.1007/s11629-014-3405-6

    Google Scholar 

  55. Verburg PH, Soepboer W, Veldkamp A, et al. (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management 30(3): 391–405. https://doi.org/10.1007/s00267-002-2630-x

    Google Scholar 

  56. Xu EQ, Zhang HQ, Yao LN (2018) An elevation-based stratification model for simulating land use change. Remote Sensing 10(11): 1730. https://doi.org/10.3390/rs10111730

    Google Scholar 

  57. Yang XH, Jin XB, Xiang XM, et al. (2019) Carbon emissions induced by farmland expansion in China during the past 300 years. Science China Earth Sciences 62(2): 423–437. https://doi.org/10.1007/s11430-017-9221-7

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under (Grant No.41877533) and Beijing Social Science Foundation (Grant No.18GLB014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin-lin Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Ll., Liu, M. & Zhan, Jq. Land use scenario simulation of mountainous districts based on Dinamica EGO model. J. Mt. Sci. 17, 289–303 (2020). https://doi.org/10.1007/s11629-019-5491-y

Download citation

Keywords

  • Land use change
  • Mountainous districts
  • Dinamica EGO model
  • Scenarios simulation
  • Mentougou district