Skip to main content

Assessing the performance of decision tree and neural network models in mapping soil properties

Abstract

To build any spatial soil database, a set of environmental data including digital elevation model (DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network (ANN) and Decision Tree (DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties (including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand (R2=0.73), silt (R2=0.70), clay (R2=0.72), organic carbon (R2=0.71), and carbonates (R2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity (R2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are site-specific and may not be applicable to use for predicting other soil properties or other area.

This is a preview of subscription content, access via your institution.

References

  1. Akramkhanov A, Vlek PL (2012) The assessment of spatial distribution of soil salinity risk using neural network. Environmental Monitoring and Assessment 184(4): 2475–2485. https://doi.org/10.1007/s10661-011-2132-5

    Google Scholar 

  2. Akumu CE, Johnson JA, Etheridge D, et al. (2015) GIS-fuzzy logic based approach in modeling soil texture: using parts of the Clay Belt and Hornepayne region in Ontario Canada as a case study. Geoderma 239-240: 13–24. https://doi.org/10.1016/j.geoderma.2014.09.021

    Google Scholar 

  3. Alavi Panah SK (2000) Investigation and evaluation of the use of the soil salinity map, Journal of Desert 5: 1–15.

    Google Scholar 

  4. Ali I, Greifeneder F, Stamenkovic J, et al. (2015) Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing 7(12): 16398–16421. https://doi.org/10.3390/rs71215841

    Google Scholar 

  5. Anagu I, Ingwersen J, Utermann J, et al. (2009) Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma 152(1-2): 104–112. https://doi.org/10.1016/j.geoderma.2009.06.004

    Google Scholar 

  6. Batjes NH (2008) Mapping soil carbon stocks of Central Africa using SOTER. Geoderma 146(1-2): 58–65. https://doi.org/10.1016/j.geoderma.2008.05.006

    Google Scholar 

  7. Behrens T, Scholten T (2006) A comparison of data-mining techniques in predictive soil mapping. Developments in Soil Science 31: 353–617. https://doi.org/10.1016/S0166-2481(06)31025-2

    Google Scholar 

  8. Beucher A, Møller AB, Greve MH (2017) Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma 320: 30–42. https://doi.org/10.1016/j.geoderma.2017.11.004

    Google Scholar 

  9. Bagheri Bodaghabadi M, Martínez-Casasnovas JA, Borujeni IE, et al. (2016) Database extension for digital soil mapping using artificial neural networks. Arabian Journal of Geosciences 9(18): 701. https://doi.org/10.1007/s12517-016-2732-z

    Google Scholar 

  10. Bagheri Bodaghabadi M, Martínez-Casasnovas J, et al. (2015) Digital soil mapping using artificial neural networks and terrainrelated attributes. Pedosphere 25(4): 580–591. https://doi.org/10.1016/S1002-0160(15)30038-2

    Google Scholar 

  11. Bagheri Bodaghabadi M, Salehi MH, Martínez-Casasnovas JA, et al. (2011) Using Canonical Correspondence Analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications. Catena 86: 66–74. https://doi.org/10.1016/j.catena.2011.02

    Google Scholar 

  12. Boettinger JL, Ramsey RD, Bodily JM, et al. (2008) Landsat spectral data for digital soil mapping. In Digital soil mapping with limited data. Springer, Dordrecht: 193–202. https://doi.org/10.1007/978-1-4020-8592-5_16

    Book  Google Scholar 

  13. Breiman L, Friedman J, Olshen R, et al (1984) Classification and Regression Trees. Belmont, CA: Wadsworth International Group 40(3): 874. https://doi.org/10.2307/2530946

    Google Scholar 

  14. Brevik EC, Calzolari C, Miller BA, et al. (2016) Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 264: 256–274. https://doi.org/10.1016/j.geoderma.2015.05.017

    Google Scholar 

  15. Bui LV, Stahr K, Clemens G (2017) A fuzzy logic slope-form system for predictive soil mapping of a landscape-scale area with strong relief conditions. Catena 155: 135–146. https://doi.org/10.1016/j.catena.2017.03.001

    Google Scholar 

  16. Bünemann E K, Bongiorno G, Bai Z, et al. (2018) Soil qualitya critical review. Soil Biology and Biochemistry 120: 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  Google Scholar 

  17. Costantino F, Di Gravio G, Nonino F (2015) Project selection in project portfolio management: An artificial neural network model based on critical success factors. International Journal of Project Management 33(8): 1744–1754. https://doi.org/10.1016/j.ijproman.2015.07.003

    Google Scholar 

  18. Dai F, Zhou Q, Lv Z, et al. (2014) Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators 45: 184–194. https://doi.org/10.1016/j.ecolind.2014.04.003

    Google Scholar 

  19. Danesh M, Hosin Ali B, Alavi Panah SK, et al (2009) Simultaneous Geometric analysis of soil carbonate and particle diameters using remote sensing data (Case Study: Southwest of Lorestan, Pole dokhtar). Iranian Journal of Geology: 25–36, (publish in Persian).

    Google Scholar 

  20. Debella-Gilo M, Etzelmüller B (2009) Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena 77(1): 8–18. https://doi.org/10.1016/j.catena.2008.12.001

    Google Scholar 

  21. Dolati P, Heidari A (2016) Physiographic structure of Alborz Province and its relationship with geopedologic properties. Master thesis, University of Tehran. (In Persian).

    Google Scholar 

  22. Drzewiecki W, Wezyk P, Pierzchalski M, et al. (2014). Quantitative and qualitative assessment of soil erosion risk in Małopolska (Poland), supported by an object-based analysis of high-resolution satellite images. Pure and Applied Geophysics 171(6): 867–895. https://doi.org/10.1007/s00024-013-0669-7

    Google Scholar 

  23. Du F, Zhu AX, Band L, et al. (2015) Soil property variation mapping through data mining of soil category maps. Hydrological processes 29(11): 2491–2503. https://doi.org/10.1002/hyp.10383

    Google Scholar 

  24. Fatehi SH, Mohamadi J, Salehi MH et al. (2016) Downscaling digital maps of some soil surface properties (Case Study: Merck Watershed, Kermanshah Province). Journal of Water and Soil Conservation Studies 23: 23–43. (In Persian).

    Google Scholar 

  25. Gallant JC, Dowling TI (2003) A multiresolution index of valley bottom flatness for mapping depositional areas, Water Resources Research 39(12): 1347–1359. https://doi.org/10.1029/2002WR001426

    Google Scholar 

  26. Giasson E, Figueiredo SR, Tornquist CG, et al. (2008) Digital soil mapping using logistic regression on terrain parameters for several ecological regions in Southern Brazil. Digital soil mapping with limited data, Springer. pp 225–232. https://doi.org/10.1007/978-1-4020-8592-5_19

    Chapter  Google Scholar 

  27. Grinand C, Arrouays D, Laroche B, et al. (2008) Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context. Geoderma 143(1-2): 180–190. https://doi.org/10.1016/j.geoderma.2007.11.004

    Google Scholar 

  28. Hengl T, Rossiter DG, Stein A (2004) Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Soil Research 41(8): 1403–1422. https://doi.org/10.1071/SR03005

    Google Scholar 

  29. Hertz JA (2018) Introduction to the theory of neural computation. CRC Press. https://doi.org/10.1201/9780429499661

    Book  Google Scholar 

  30. Heung B, Bulmer CE, Schmidt MG (2014) Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 241: 141–154. https://doi.org/10.1016/j.geoderma.2013.09.016

    Google Scholar 

  31. Heung B, Ho HC, Zhang J, et al. (2016) An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 265: 62–77. https://doi.org/10.1016/j.geoderma.2015.11.014

    Google Scholar 

  32. Huang X, Senthilkumar S, Kravchenko A, et al. (2007) Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information. Geoderma 141(1-2): 34–42. https://doi.org/10.1016/j.geoderma.2007.04.023

    Google Scholar 

  33. Jafari A, Finke PA, de Wauw JV, et al. (2012) Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science 63(2): 284–298. https://doi.org/10.1111/j.1365-2389.2012.01425.x

    Google Scholar 

  34. Jafari A, Khademi H, Finke PA, et al. (2014) Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran. Geoderma 232: 148–163. https://doi.org/10.1016/j.geoderma.2014.04.029

    Google Scholar 

  35. Kalambukattu JG, Kumar S, Raj RA (2018) Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model. Environmental Earth Sciences 77(5): 203. https://doi.org/10.1007/s12665-018-7367-9

    Google Scholar 

  36. Kheir RB, Greve MH, Bøcher PK, et al. (2010) Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark. Journal of Environmental Management 91(5): 1150–1160. https://doi.org/10.1016/j.jenvman.2010.01.001

    Google Scholar 

  37. Khodadadi M, Sarmadian F, Refahi H, et al. (2009) Saline and alkaline soil mapping using ASTER data in the Qazvin plain. Journal of the Iranian Natural Resources 61: 1143–1156 (In Persian).

    Google Scholar 

  38. Li Q, Yue TX, Wang CQ, et al. (2013) Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach. Catena 104: 210–218. https://doi.org/10.1016/j.catena.2012.11.012

    Google Scholar 

  39. Luoto M. and Hjort J (2005) Evaluation of current statistical approaches for predictive geomorphological mapping, Geomorphology 67(3-4): 299–315. https://doi.org/10.1016/j.geomorph.2004.10.006

    Google Scholar 

  40. Ma Y, Minasny B, Wu C (2017) Mapping key soil properties to support agricultural production in Eastern China. Geoderma Regional 10: 144–153. https://doi.org/10.1016/j.geodrs.2017.06.002

    Google Scholar 

  41. Mahmoudabadi E, Karimi A, Haghnia GH, et al. (2017) Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental monitoring and assessment 189(10): 500. https://doi.org/10.1007/s10661-017-6197-7

    Google Scholar 

  42. Malone BP, McBratney AB, Minasny B et al. (2009) Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 154(1-2): 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007

    Google Scholar 

  43. Malone BP, Minasny B, McBratney AB (2017) Using digital soil mapping to update, harmonize and disaggregate legacy soil maps. In Using R for Digital Soil Mapping, Springer. pp 221–230. https://doi.org/10.1007/978-3-319-44327-0_8

    Chapter  Google Scholar 

  44. Mansuy N, Thiffault E, Paré D, et al. (2014) Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method. Geoderma 235: 59–73. https://doi.org/10.1016/j.geoderma.2014.06.032

    Google Scholar 

  45. Martínez-Murillo JF, Hueso-González P, Ruiz-Sinoga JD (2017) Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions. Science of the Total Environment 595: 400–412. https://doi.org/10.1016/j.scitotenv.2017.03.291

    Google Scholar 

  46. Masbah Zadeh T, Ahmadi H, Sarmadian F, et al. (2015) Soil Surface salinity mapping using Landsat Satellit images (Case Study: Boein Zahra). Range and Watershed Management 67(4): 631–640. (In Persian).

    Google Scholar 

  47. McBratney AB, Santos MM, Minasny B (2003) On digital soil mapping. Geoderma 117(1-2): 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

    Google Scholar 

  48. Metternicht G, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens. Environment 85(1): 1–20. https://doi.org/10.1016/S0034-4257(02)00188-8

    Google Scholar 

  49. Minasny B, and McBratney AB (2016) Digital soil mapping: A brief history and some lessons. Geoderma 264: 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017

    Google Scholar 

  50. Mondal A, Khare D, Kundu S et al. (2017) Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Science 20(1): 61–70. https://doi.org/10.1016/j.ejrs.2016.06.004

    Google Scholar 

  51. Moonjun R, Farshad A, Shrestha DP et al (2010) Artificial neural network and decision tree in predictive soil mapping of Hoi Num Rin sub-watershed, Thailand. Digital Soil Mapping: 151–164. https://doi.org/10.1007/978-90-481-8863-5_13

    Google Scholar 

  52. Mosleh Z, Salehi MH, Jafari A, et al. (2016) The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental monitoring and assessment 188(3): 195. https://doi.org/10.1007/s10661-016-5204-8

    Google Scholar 

  53. Nabiollahi K, Haidari A, Taghizadeh MR (2014) Digital Mapping of Soil Texture Using Regression Tree and Artificial Neural Network in Bijar, Kurdistank 28(5): 1025–1036.

    Google Scholar 

  54. Nield SJ, Boettinger JL, Ramsey RD (2007) Digitally mapping gypsic and natric soil areas using Landsat ETM data. Soil Science Society of America Journal 71(1): 245–252. https://doi.org/10.2136/sssaj2006-0049

    Google Scholar 

  55. Okin GS, aPainter TH (2004) Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces. Remote Sensing of Environment 89(3): 272–280. https://doi.org/10.1016/j.rse.2003.10.008

    Google Scholar 

  56. Oldeman LR, Hakkeling RTA, Sombroek WG (2017) World map of the status of human-induced soil degradation: an explanatory note. http://wedocs.unep.org/bitstream/handle/20.500.11822/19660/ExplanNote_1.pdf?sequence=1. https://doi.org/10.1081/e-ess3-120041260

  57. Otto JC, Smith MJ (2013) Geomorphological Techniques. Geomorphological mapping. Chap. 2., Sec. 6., British Society of Geomorphology.

    Google Scholar 

  58. Pahlavan-Rad MR, Khormali F, Toomanian N, et al. (2016) Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran. Geoderma 279: 141–148. https://doi.org/10.1016/j.geoderma.2016.05.014

    Google Scholar 

  59. Pinto LC, de Mello CR, Norton LD, et al. (2016) Spatial prediction of soilwater transmissivity based on fuzzy logic in a Brazilian headwater watershed 143: 26–34. https://doi.org/10.1016/j.catena.2016.03.033

    Google Scholar 

  60. Pradhan B, and Jebur MN (2017) Spatial Prediction of Landslide-Prone Areas Through k-Nearest Neighbor Algorithm and Logistic Regression Model Using High Resolution Airborne Laser Scanning Data. In Laser Scanning Applications in Landslide Assessment, Springer. pp 151–165. https://doi.org/10.1007/978-3-319-55342-9_8

  61. Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers and Geosciences 51: 350–365. https://doi.org/10.1016/j.cageo.2012.08.023

    Google Scholar 

  62. Rossel RV, Walvoort DJJ, McBratney AB, et al. (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131(1-2): 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007

    Google Scholar 

  63. Rossiter DG (2016) Knowledge is power: where geopedologic insights are necessary for predictive digital soil mapping. Geopedology, Springer. pp 227–237 https://doi.org/10.1007/978-3-319-19159-1_13

    Google Scholar 

  64. Rouse JW, Hass RH, Schell JA, et al. (1973) Monitoring vegetation systems in the Great Plains with ERTS. Third Earth resources Tech 1: 309–317.

    Google Scholar 

  65. Schoeneberger PJ, Wysocki DA (2012) Geomorphic description system, version 3.3. USDA-NRCS, National Soil Survey Center, Lincoln, NE

    Google Scholar 

  66. Silva SH, de Menezes MD, Owens PR, et al. (2016) Retrieving penologist’s mental model from existing soil map and comparing data mining tools for refining a larger area map under similar environmental conditions in Southeastern Brazil. Geoderma 267: 65–77. https://doi.org/10.1016/j.geoderma.2015.12.025

    Google Scholar 

  67. Sommer M, Gerke HH, Deumlich D (2008) Modelling soil landscape genesis—a “time split” approach for hummocky agricultural landscapes. Geoderma 145(3-4): 480–493. https://doi.org/10.1016/j.geoderma.2008.01.012

    Google Scholar 

  68. Sun W, Zhu H, Guo S (2015). Soil organic carbon as a function of land use and topography on the Loess Plateau of China. Ecological Engineering 83: 249–257. https://doi.org/10.1016/j.ecoleng.2015.06.030

    Google Scholar 

  69. Taghizadeh-Mehrjardi R, Minasny B, Sarmadian F, et al. (2014) Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 213: 15–28. https://doi.org/10.1016/j.geoderma.2013.07.020

    Google Scholar 

  70. Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R (2016) Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 266: 98–110. https://doi.org/10.1016/j.geoderma.2015.12.003

    Google Scholar 

  71. Taghizadeh-Mehrjardi R, Nabiollahi K, Minasny B, et al. (2015) Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma 266: 67–77. https://doi.org/10.1016/j.geoderma.2015.12.003

    Google Scholar 

  72. Tziachris P, Metaxa E, Papadopoulos F, et al. (2017). Spatial modelling and prediction assessment of soil iron using kriging interpolation with pH as auxiliary information. ISPRS International Journal of Geo-Information 6(9): 283. https://doi.org/10.3390/ijgi6090283

    Google Scholar 

  73. Vågen TG, Winowiecki LA, Tondoh JE, et al. (2016) Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263: 216–225. https://doi.org/10.1016/j.geoderma.2015.06.023

    Google Scholar 

  74. Vaysse K, Lagacherie P (2015) Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional 4: 20–30. https://doi.org/10.1016/j.geodrs.2014.11.003

    Google Scholar 

  75. Wang Q, Wu B, Stein A, et al. (2018) Soil depth spatial prediction by fuzzy soil-landscape model. Journal of Soils and Sediments 18(3):1041-1051. https://doi.org/10.1007/s11368-017-1779-0

    Google Scholar 

  76. Wang S, Wang X, Ouyang Z (2012) Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. Journal of Environmental Sciences 24(3): 387–395. https://doi.org/10.1016/S1001-0742(11)60789-4

    Google Scholar 

  77. Were K, Bui DT, Dick ØB, et al. (2015) A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators 52: 394–403. https://doi.org/10.1016/j.ecolind.2014.12.028

    Google Scholar 

  78. Yang RM, Zhang GL, Liu F, et al. (2016) Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological indicators 60: 870–878. https://doi.org/10.1016/j.ecolind.2015.08.036

    Google Scholar 

  79. Yang S, Feng Q, Liang T, et al. (2018) Modeling grassland aboveground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sensing of Environment 204: 448–455. https://doi.org/10.1016/j.rse.2017.10.011

    Google Scholar 

  80. Zhao Z, Chow TL, Rees HW, et al. (2009) Predict soil texture distributions using an artificial neural network model. Computers and electronics in agriculture 65(1): 36–48. https://doi.org/10.1016/j.compag.2008.07.008

    Google Scholar 

  81. Zhou G, Shi Y, Zhang R, et al. (2014) Co-location decision tree model for extracting exposed carbonate rocks in karst rocky desertification area. In Land Surface Remote Sensing II. International Society for Optics and Photonics 9260: 92600W. https://doi.org/10.1117/12.2066091

    Google Scholar 

  82. Zinck JA, Metternicht G, Bocco G, et al. (2016) Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies. Springer. https://doi.org/10.1007/978-3-319-19159-1

    Book  Google Scholar 

  83. Zolfaghari AA, Taghizadeh-Mehrjardi R, Moshki AR et al. (2016). Using the nonparametric knearest neighbor approach for predicting cation exchange capacity. Geoderma 265: 111–119. https://doi.org/10.1016/j.geoderma.2015.11.012

    Google Scholar 

  84. Zornoza R, Acosta JA, Bastida F, et al. (2015) Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 1(1) 173–185. https://doi.org/10.5194/soil-1-173-2015

    Google Scholar 

  85. Zurada JM (1992) Introduction to artificial neural systems. St. Paul: West publishing company 8.

    Google Scholar 

Download references

Acknowledgement

We sincerely appreciate College of Agriculture and Natural Resources, University of Tehran for financial support of the study (Grant No. 7104017/6/24 and 28).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmad Heidari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hateffard, F., Dolati, P., Heidari, A. et al. Assessing the performance of decision tree and neural network models in mapping soil properties. J. Mt. Sci. 16, 1833–1847 (2019). https://doi.org/10.1007/s11629-019-5409-8

Download citation

Keywords

  • Digital soil mapping
  • soil properties
  • environmental variables
  • Artificial Neural Network
  • Decision Tree