Changes in demand and supply of ecosystem services under scenarios of future land use in Vorarlberg, Austria

Abstract

Ecosystem services (ES) are highly impacted by human-induced land-use change. Progressive urbanization and agricultural land abandonment in Western Europe necessitate assessments of future land-change impacts on ES to ensure sustainable service management. The present study aims at evaluating future demand and supply of three key services (flood protection, nearby recreation and biodiversity) in the mountainous region of Vorarlberg, Austria. We mapped the ES for the referenced time step 2016 and two scenarios for 2050, assuming the continuation of current land-change trends and pressure on landscape development. Results for the referenced landscape in 2016 show the highest ES supply for intermediate levels, while ES supply was low in the lowlands and valley bottoms and in high-elevation areas. We found a high positive correlation of ES with the distribution of forested areas. In contrast, service demand was highest in low-elevation areas and decreased with increasing elevation. This indicates that densely settled and intensively used agricultural areas currently suffer from ES undersupply. The projected future development of land use showed an increase in both supply and demand of the selected ES. The overall service supply increased more than the respective demand due to some reforestation of open land. As forests were found to be important synergistic areas for overall service provision, we expect decreasing demand on related services. Locally, demand was found to exceed the supply of ES, especially in the densely populated Rhine valley- requiring further policy interventions. Such ES-related information may contribute to regional policy making and ensure the long-term provision of ESs for future generations.

This is a preview of subscription content, access via your institution.

References

  1. Albert C, Bonn A, Burkhard B, et al. (2016) Towards a national set of ecosystem service indicators: Insights from Germany. Ecological Indicators 61: 38–48. https://doi.org/10.1016/j.ecolind.2015.08.050

    Article  Google Scholar 

  2. Amt der Vorarlberger Landesregierung — Landespressestelle (2016) Vorarlberg Compact. About the country and its people.

  3. Amt der Vorarlberger Landesregierung — Landesstelle für Statistik (2017) Bevölkerungsstatistik Verwaltungszählung vom 30. September 2017. A. d. V. L. L. f. Statistik.

  4. Baró F, Gómez-Baggethun E, Haase D (2017) Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosystem Services 24: 147–159. https://doi.org/10.1016/j.ecoser.2017.02.021

    Article  Google Scholar 

  5. Bastian O, Haase D, Grunewald K (2012) Ecosystem properties, potentials and services — The EPPS conceptual framework and an urban application example. Ecosystem properties, potentials and services — The EPPS conceptual framework and an urban application example 21: 7–16.

    Google Scholar 

  6. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecology Letters 12: 1394–1404. https://doi.org/10.1111/j.1461-0248.2009.01387.x

    Article  Google Scholar 

  7. Björk J, Albin M, Grahn P, et al. (2008) Recreational values of the natural environment in relation to neighbourhood satisfaction, physical activity, obesity and wellbeing. Journal of epidemiology and community health 62.

  8. Bohannon RW (1997) Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age and Ageing 26: 15–19. https://doi.org/10.1093/ageing/26.1.15

    Article  Google Scholar 

  9. Bolliger J, Bättig M, Gallati J, et al. (2011) Landscape multifunctionality: a powerful concept to identify effects of environmental change. Regional Environmental Change 11: 203–206. https://doi.org/10.1007/s10113-010-0185-6

    Article  Google Scholar 

  10. Bolliger J, Hagedorn F, Leifeld J, et al. (2008) Potential carbonpool changes under various scenarios of land-use change in a mountainous region (Switzerland). Ecosystems 11: 895–907.

    Article  Google Scholar 

  11. Brandt P, Abson DJ, DellaSala DA, et al. (2014) Multifunctionality and biodiversity: Ecosystem services in temperate rainforests of the Pacific Northwest, USA. Biological Conservation 169: 362–371. https://doi.org/10.1016/j.biocon.2013.12.003

    Article  Google Scholar 

  12. Bubeck P, de Moel H, Bouwer LM, Aerts JCJH (2011) How reliable are projections of future flood damage? Natural Hazards and Earth System Sciences 11: 3293–3306. https://doi.org/10.5194/nhess-11-3293-2011

    Article  Google Scholar 

  13. Buchecker M, Kienast F, Degenhardt B, et al. (2013) Naherholung räumlich erfassen. Merkbl. Prax. 51. p 8.

    Google Scholar 

  14. Burkhard B, Kroll F, Müller F, Windhorst W (2009) Landscapes’ Capacities to Provide Ecosystem Services — a Concept for Land-Cover Based Assessments. Landscape Online 15: 1–22.

    Article  Google Scholar 

  15. Burkhard B, Kroll F, Nedkov S, Müller F (2012) Mapping ecosystem service supply, demand and budgets. Ecological Indicators 21: 17–29. https://doi.org/10.1016/j.ecolind.2011.06.019

    Article  Google Scholar 

  16. Burkhard B, Maes J (2017) Mapping ecosystem services. Sofia: Pensoft Publishers. https://doi.org/10.3897/ab.e12837

    Google Scholar 

  17. Burkhard B, Petrosillo I, Costanza R (2010) Ecosystem services — Bridging ecology, economy and social sciences. Ecological Complexity 7: 257–259. https://doi.org/10.1016/j.ecocom.2010.07.001

    Article  Google Scholar 

  18. Chan KMA, Shaw MR, Cameron DR, et al. (2006) Conservation planning for ecosystem services. PloS Biology 4: 2138.

    Google Scholar 

  19. Coppes J, Burghardt F, Hagen R, et al. (2017) Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus). Plos One 12. https://doi.org/10.1371/journal.pone.0175134

    Article  Google Scholar 

  20. Costanza R (2008) Ecosystem services: Multiple classification systems are needed. Biol Conserv 141: 350–352. doi: https://doi.org/10.1016/j.biocon.2007.12.020

    Article  Google Scholar 

  21. Coyner B (2008) An Assessment of Habitat Fragmentation by Roads in Cimarron County, Oklahoma. Proceedings of the Oklahoma Academy of Science 88: 21–26.

    Google Scholar 

  22. Czech B, Krausman PR, Devers PK (2000) Economic Associations among Causes of Species Endangerment in the United States. Associations among causes of species endangerment in the United States reflect the integration of economic sectors, supporting the theory and evidence that economic growth proceeds at the competitive exclusion of nonhuman species in the aggregate. BioScience 50: 593–601. https://doi.org/10.1641/0006-3568(2000)050[0593:EAACOS]2.0.CO

    Article  Google Scholar 

  23. Daily GC (2000) Management objectives for the protection of ecosystem services. Environmental Science & Policy 3: 333–339. https://doi.org/10.1016/S1462-9011(00)00102-7

    Article  Google Scholar 

  24. Di Febbraro M, Sallustio L, Vizzarri M, et al. (2018) Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning? Global Ecology and Conservation 16: 13. https://doi.org/10.1016/j.gecco.2018.e00513

    Article  Google Scholar 

  25. Duarte-Guardia S, Peri PL, Amelung W, et al. (2019) Better estimates of soil carbon from geographical data: a revised global approach. Mitigation and Adaptation Strategies for Global Change 24: 355–372. https://doi.org/10.1007/s11027-018-9815-y

    Article  Google Scholar 

  26. EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe. An overview of the last decade. Luxembourg. p 144.

  27. Egoh B, Reyers B, Rouget M, et al. (2009) Spatial congruence between biodiversity and ecosystem services in South Africa. Biological Conservation 142: 553–562. https://doi.org/10.1016/j.biocon.2008.11.009

    Article  Google Scholar 

  28. FAO (2016) Global Forest Resources Assessment 2015: How have the world’s forests changed? Food and agriculture organization of the United Nations, Rome, Second Edition. ISBN 978-92-5-109283-5.

    Google Scholar 

  29. Feng Q, Zhao W, Fu B, et al. (2017) Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Science of the Total Environment 607–608: 1250–1263. https://doi.org/10.1016/j.scitotenv.2017.07.079

    Article  Google Scholar 

  30. Frank S, Burkhard B (2017) Mapping ecosystem services on different scales. In: Burkhard B, Maes J (eds.), Mapping ecosystem services. Sofia: Pensoft Publishers. pp 231–232.

    Google Scholar 

  31. Ghimire R, Ferreira S, Green GT, et al. (2017) Green Space and Adult Obesity in the United States. Ecological Economics 136: 201–212. https://doi.org/10.1016/j.ecolecon.2017.02.002

    Article  Google Scholar 

  32. Gill JC, Malamud BD (2014) Reviewing and visualizing the interactions of natural hazards. Reviews of Geophysics 52: 680–722. https://doi.org/10.1002/2013RG000445

    Article  Google Scholar 

  33. Gimona A, van der Horst D (2007) Mapping hotspots of multiple landscape functions: a case study on farmland afforestation in Scotland. Landscape Ecology 22: 1255–1264.

    Article  Google Scholar 

  34. Goldenberg R, Kalantari Z, Cvetkovic V, et al. (2017) Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Science of the Total Environment 593: 599–609. https://doi.org/10.1016/j.scitotenv.2017.03.130

    Article  Google Scholar 

  35. Grêt-Regamey A, Brunner SH, Kienast F (2012) Mountain Ecosystem Services: Who Cares? Mountain Research and Development 32: S23–S34. https://doi.org/10.1659/MRD-JOURNAL-D-10-00115.S1

    Article  Google Scholar 

  36. Grêt-Regamey A, Weibel B, Bagstad KJ, et al. (2014) On the effects of scale for ecosystem services mapping. Plos One 9: e112601.

    Article  Google Scholar 

  37. Grytnes JA, Vetaas OR (2002) Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. American Naturalist 159: 294–304.

    Article  Google Scholar 

  38. Haida C, Rüdisser J, Tappeiner U (2016) Ecosystem services in mountain regions: experts’ perceptions and research intensity. Regional Environmental Change 16: 1989–2004. https://doi.org/10.1007/s10113-015-0759-4

    Article  Google Scholar 

  39. Han HQ, Dong YX (2017) Assessing and mapping of multiple ecosystem services in Guizhou Province, China. Tropical Ecology 58: 331–346.

    Google Scholar 

  40. Hanika A (2010) Kleinräumige Bevölkerungsprognose für Österreich 2010–2030 mit Ausblick bis 2050 („ÖROK-Prognosen“). Endbericht zur Bevölkerungsprognose 1: 179.

    Google Scholar 

  41. Hartig T, Evans GW, Jamner LD, et al (2003) Tracking restoration in natural and urban field settings. Journal of Environmental Psychology 23: 109–123. https://doi.org/10.1016/S0272-4944(02)00109-3

    Article  Google Scholar 

  42. Hauck J, Görg C, Varjopuro R, et al. (2013) Benefits and limitations of the ecosystem services concept in environmental policy and decision making: Some stakeholder perspectives. Environmental Science & Policy 25: 13–21. https://doi.org/10.1016/j.envsci.2012.08.001

    Article  Google Scholar 

  43. Heink U, Hauck J, Jax K, Sukopp U (2016) Requirements for the selection of ecosystem service indicators — The case of MAES indicators. Ecological Indicators 61: 18–26. https://doi.org/10.1016/j.ecolind.2015.09.031

    Article  Google Scholar 

  44. Hortal J, Carrascal LM, Triantis KA, et al. (2013) Species richness can decrease with altitude but not with habitat diversity. Proceedings of the National Academy of Sciences of the United States of America 110: E2149–E2150. https://doi.org/10.1073/pnas.1301663110

    Article  Google Scholar 

  45. Huber N, Hergert R, Price B, et al. (2017) Renewable energy sources: conflicts and opportunities in a changing landscape. Regional Environmental Change. 17: 1241–1255.

    Article  Google Scholar 

  46. Jaeger JAG, Schwick C (2014) Improving the measurement of urban sprawl: Weighted Urban Proliferation (WUP) and its application to Switzerland. Ecological Indicators 38: 294–308. https://doi.org/10.1016/j.ecolind.2013.11.022

    Article  Google Scholar 

  47. Jongman B, Ward PJ, Aerts JCJH (2012) Global exposure to river and coastal flooding: Long term trends and changes. Global Environmental Change 22: 823–835. https://doi.org/10.1016/j.gloenvcha.2012.07.004

    Article  Google Scholar 

  48. Jopke C, Kreyling J, Maes J, Koellner T (2015) Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecological Indicators 49: 46–52. https://doi.org/10.1016/j.ecolind.2014.09.037

    Article  Google Scholar 

  49. Kampmann D, Luscher A, Konold W, Herzog F (2012) Agri-environment scheme protects diversity of mountain grassland species. Land Use Policy 29: 569–576. https://doi.org/10.1016/j.landusepol.2011.09.010

    Article  Google Scholar 

  50. Kandziora M, Burkhard B, Müller F (2013) Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecological Indicators 28: 54–78. https://doi.org/10.1016/j.ecolind.2012.09.006

    Article  Google Scholar 

  51. Kienast F, Bolliger J, Potschin M, et al. (2009) Assessing landscape functions with broad-scale environmental data: insights gained from a prototype development for Europe. Environmental Management 44: 1099–1120. https://doi.org/10.1007/s00267-009-9384-7

    Article  Google Scholar 

  52. Kienast F, Degenhardt B, Weilenmann B, et al. (2012) GIS-assisted mapping of landscape suitability for nearby recreation. Landscape and Urban Planning 105: 385–399.

    Article  Google Scholar 

  53. Kienast F, Frick J, van Strien MJ, Hunziker M (2015) The Swiss Landscape Monitoring Program — A comprehensive indicator set to measure landscape change. Ecological Modelling 295: 136–150. https://doi.org/10.1016/j.ecolmodel.2014.08.008

    Article  Google Scholar 

  54. Komossa F, Van der Zanden EH, Verburg PH (2019) Characterizing outdoor recreation user groups: a typology of peri-urban recreationists in the Kromme Rijn area, the Netherlands. Land Use Policy 80: 246–258. https://doi.org/10.1016/j.landusepol.2018.10.017

    Article  Google Scholar 

  55. Kuemmerle T, Levers C, Erb K, et al. (2016) Hotspots of land use change in Europe. Environmental Research Letters 11. https://doi.org/10.1088/1748-9326/11/6/064020

    Article  Google Scholar 

  56. Laterra P, Orúe ME, Booman GC (2012) Spatial complexity and ecosystem services in rural landscapes. Agriculture, Ecosystems and Environment 154: 56–67. https://doi.org/10.1016/j.agee.2011.05.013

    Article  Google Scholar 

  57. Layke C, Mapendembe A, Brown C, et al. (2012) Indicators from the global and sub-global Millennium Ecosystem Assessments: An analysis and next steps. (Report). Ecological Indicators 17: 77.

    Article  Google Scholar 

  58. Leikkilä J, Faehnle M, Galanakis M (2013) Promoting interculturalism by planning of urban nature. Urban Forestry & Urban Greening 12: 183–190. https://doi.org/10.1016/j.ufug.2013.02.002

    Article  Google Scholar 

  59. Levers C, Butsic V, Verburg PH, et al. (2016) Drivers of changes in agricultural intensity in Europe. Land Use Policy 58: 380–393. https://doi.org/10.1016/j.landusepol.2016.08.013

    Article  Google Scholar 

  60. Levers C, Müller D, Erb K, et al. (2018) Archetypical patterns and trajectories of land systems in Europe. Reg Environ Chang 18: 715–732. https://doi.org/10.1007/s10113-015-0907-x

    Article  Google Scholar 

  61. Lin S, Wu R, Yang F, et al. (2018) Spatial trade-offs and synergies among ecosystem services within a global biodiversity hotspot. Ecological Indicators 84: 371–381. https://doi.org/10.1016/j.ecolind.2017.09.007

    Article  Google Scholar 

  62. Lin YP, Lin WC, Wang YC, et al. (2017) Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environmental Modelling & Software 90: 126–146. https://doi.org/10.1016/j.envsoft.2017.01.003

    Article  Google Scholar 

  63. MA (2005a) Ecosystems and human well-being. Washington: Island Press.

    Google Scholar 

  64. MA (2005b) Ecosystems and Human Well-being: Synthesis. Washington, DC.: Island Press.

    Google Scholar 

  65. Maes J, Paracchini ML, Zulian G, et al. (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biological Conservation 155: 1–12. https://doi.org/10.1016/j.biocon.2012.06.016

    Article  Google Scholar 

  66. Marcantonio M, Rocchini D, Geri F, et al. (2013) Biodiversity, roads, & landscape fragmentation: Two Mediterranean cases. Applied Geography 42: 63–72. https://doi.org/10.1016/j.apgeog.2013.05.001

    Article  Google Scholar 

  67. Matsuoka RH, Kaplan R (2008) People needs in the urban landscape: Analysis of Landscape And Urban Planning contributions. Landscape and Urban Planning 84: 7–19. https://doi.org/10.1016/j.landurbplan.2007.09.009

    Article  Google Scholar 

  68. Mouchet MA, Paracchini ML, Schulp CJE, et al. (2017) Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecological Indicators 73: 23–28. https://doi.org/10.1016/j.ecolind.2016.09.026

    Article  Google Scholar 

  69. Nedkov S, Burkhard B (2012) Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecological Indicators 21: 67–79. https://doi.org/10.1016/j.ecolind.2011.06.022

    Article  Google Scholar 

  70. Nelson E, Mendoza G, Regetz J, et al. (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7: 4–11. https://doi.org/10.1890/080023

    Article  Google Scholar 

  71. Peña L, Casado-Arzuaga I, Onaindia M (2015) Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosystem Services 13: 108–118. https://doi.org/10.1016/j.ecoser.2014.12.008

    Article  Google Scholar 

  72. Penna D, Borga M (2013) 5.15 — Natural Hazards Assessment in Mountainous Terrains of Europe: Landslides and Flash Floods. Climate Vulnerability, Oxford Academic Press. pp 229–239.

    Google Scholar 

  73. Plieninger T, Draux H, Fagerholm N, et al. (2016) The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 57: 204–214. https://doi.org/10.1016/j.landusepol.2016.04.040

    Article  Google Scholar 

  74. Polasky S, Nelson E, Pennington D, Johnson K (2011) The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. The Official Journal of the European Association of Environmental and Resource Economists 48: 219–242. https://doi.org/10.1007/s10640-010-9407-0

    Google Scholar 

  75. Posthumus H, Rouquette JR, Morris J, et al. (2010) A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England. Ecological Economics 69: 1510–1523. https://doi.org/10.1016/j.ecolecon.2010.02.011

    Article  Google Scholar 

  76. Price B, Kienast F, Seidl I, et al. (2015) Future landscapes of Switzerland: risk areas for urbanisation and land abandonment. Applied Geography 57: 32–41. https://doi.org/10.1016/j.apgeog.2014.12.009

    Article  Google Scholar 

  77. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences 107: 5242. https://doi.org/10.1073/pnas.0907284107

    Article  Google Scholar 

  78. Sallustio L, De Toni A, Strollo A, et al. (2017) Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. Journal of Environmental Management 201: 129–137. https://doi.org/10.1016/j.jenvman.2017.06.031

    Article  Google Scholar 

  79. Šatalová B, Kenderessy P (2017) Assessment of water retention function as tool to improve integrated watershed management (case study of Poprad river basin, Slovakia). Science of the Total Environment 599: 1082–1089. https://doi.org/10.1016/j.scitotenv.2017.04.227

    Article  Google Scholar 

  80. Scannell L, Gifford R (2016) Place Attachment Enhances Psychological Need Satisfaction. Environment and Behavior 49: 359–389. https://doi.org/10.1177/0013916516637648

    Article  Google Scholar 

  81. Schneeberger K, Huttenlau M, Winter B, et al. (2019) A Probabilistic Framework for Risk Analysis of Widespread Flood Events. A Proof-of-Concept Study. Risk Analysis 39: 125–139. https://doi.org/10.1111/risa.12863.

    Article  Google Scholar 

  82. Scholte SSK, Daams M, Farjon H, et al. (2018) Mapping recreation as an ecosystem service: considering scale, interregional differences and the influence of physical attributes. Landscape and Urban Planning 175: 149–160. https://doi.org/10.1016/j.landurbplan.2018.03.011

    Article  Google Scholar 

  83. Schröter M, Barton DN, Remme RP, Hein L (2014) Accounting for capacity and flow of ecosystem services: A conceptual model and a case study for Telemark, Norway. Ecological Indicators 36: 539–551. https://doi.org/10.1016/j.ecolind.2013.09.018

    Article  Google Scholar 

  84. Schröter M, Remme RP, Hein L (2012) How and where to map supply and demand of ecosystem services for policy-relevant outcomes? Ecological Indicators 23: 220–221. https://doi.org/10.1016/j.ecolind.2012.03.025

    Article  Google Scholar 

  85. Schulz T, Lauber S, Herzog F (2018) Summer Farms in Switzerland: Profitability and Public Financial Support. Mountain Research and Development 38: 14–23. https://doi.org/10.1659/mrd-journal-d-16-00118.1

    Article  Google Scholar 

  86. Secretariat of the Convention on Biological Diversity (2006) Global Biodiversity Outlook 2. Montreal.

  87. Secretariat of the Convention on Biological Diversity (2010) Global biodiversity outlook 3. In Secretariat of the Convention on Biological Diversity.

  88. Secretariat of the Convention on Biological Diversity (2012) Cities and Biodiversity Outlook. Montreal. p 64.

  89. Seidl I, Herzog F (2018) Swiss alpine summer farming: current status and future development under climate change. Rangeland Journal 40: 501–511. https://doi.org/10.1071/RJ18031

    Article  Google Scholar 

  90. Seppelt R, Dormann CF, Eppink FV, et al. (2011) A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. Journal of Applied Ecology 48: 630–636. https://doi.org/10.1111/j.1365-2664.2010.01952.x

    Article  Google Scholar 

  91. Shaffer JA, Roth CL, Mushet DM (2019) Modeling effects of crop production, energy development and conservation-grassland loss on avian habitat. Plos One 14: 17. https://doi.org/10.1371/journal.pone.0198382

    Google Scholar 

  92. Sharp R, Tallis HT, Ricketts T, et al. (2018) InVEST 3.6.0 User’s Guide. The Natural Capital Project, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

  93. Stobbelaar DJ, Pedroli B (2011) Perspectives on Landscape Identity: A Conceptual Challenge. Landscape Research 36: 321–339. https://doi.org/10.1080/01426397.2011.564860

    Article  Google Scholar 

  94. Stürck J, Poortinga A, Verburg PH (2014) Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecological Indicators 38: 198–211. https://doi.org/10.1016/j.ecolind.2013.11.010

    Article  Google Scholar 

  95. Sturck J, Verburg PH (2017) Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landscape Ecology 32: 481–500. https://doi.org/10.1007/s10980-016-0459-6

    Article  Google Scholar 

  96. Stürck J, Verburg PH (2017) Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landscape Ecology 32: 481–500.

    Article  Google Scholar 

  97. Swanwick C, Hanley N, Termansen M (2007) Scoping study on agricultural landscape valuation. Appendix A. Summary review of the literature on landscape value, perception and preferences. London.

  98. Syrbe R-U, Walz U (2012) Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecological Indicators 21: 80–88. https://doi.org/10.1016/j.ecolind.2012.02.013

    Article  Google Scholar 

  99. Szücs L, Anders U, Bürger-Arndt R (2015) Assessment and illustration of cultural ecosystem services at the local scale — A retrospective trend analysis. Ecological Indicators 50: 120–134. https://doi.org/10.1016/j.ecolind.2014.09.015

    Article  Google Scholar 

  100. TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. London and Washington: Earthscan.

    Google Scholar 

  101. Terrado M, Sabater S, Chaplin-Kramer B, et al. (2016) Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the Total Environment 540: 63–70. https://doi.org/10.1016/j.scitotenv.2015.03.064

    Article  Google Scholar 

  102. Tiefenbach M, Rabitsch W, Brandl K (2014) Fifth National Report of Austria. Convention on Biological Diversity. Vienna. p 92.

    Google Scholar 

  103. Tieskens KF, Van Zanten BT, Schulp CJE, Verburg PH (2018) Aesthetic appreciation of the cultural landscape through social media: an analysis of revealed preference in the Dutch river landscape. Landscape and Urban Planning 177: 128–137. https://doi.org/10.1016/j.landurbplan.2018.05.002

    Article  Google Scholar 

  104. Tsunetsugu Y, Lee J, Park BJ, et al. (2013) Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landscape and Urban Planning 113: 90–93. https://doi.org/10.1016/j.landurbplan.2013.01.014

    Article  Google Scholar 

  105. Turpie JK, Marais C, Blignaut JN (2008) The working for water programme: Evolution of a payments for ecosystem services mechanism that addresses both poverty and ecosystem service delivery in South Africa. Ecological Economics 65: 788–798. https://doi.org/10.1016/j.ecolecon.2007.12.024

    Article  Google Scholar 

  106. Tyrväinen L, Ojala A, Korpela K, et al. (2014) The influence of urban green environments on stress relief measures: A field experiment. Journal of Environmental Psychology 38: 1–9. https://doi.org/10.1016/j.jenvp.2013.12.005

    Article  Google Scholar 

  107. United Nations DoEaSA, Population Division (2015) World Urbanization Prospects: The 2014 Revision, (ST/ESA/SER.A/366).

  108. Ustaoglu E, Collier MJ (2018) Farmland abandonment in Europe: an overview of drivers, consequences, and assessment of the sustainability implications. Environmental Reviews 26: 396–416. https://doi.org/10.1139/er-2018-0001

    Article  Google Scholar 

  109. Van Asselen S, Verburg PH (2013) Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Global Change Biology 19: 3648–3667. https://doi.org/10.1111/gcb.12331

    Article  Google Scholar 

  110. Villamagna AM, Angermeier PL, Bennett EM (2013) Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery. Ecological Complexity 15: 114–121. https://doi.org/10.1016/j.ecocom.2013.07.004

    Article  Google Scholar 

  111. Walz A, Gret-Regamey A, Lavorel S (2016) Social valuation of ecosystem services in mountain regions. Regional Environmental Change 16: 1985–1987. https://doi.org/10.1007/s10113-016-1028-x

    Article  Google Scholar 

  112. Walz U, Syrbe R-U, Grunewald K (2017) Where to map? In: Burkhard B, Maes J (eds.), Mapping ecosystem services Sofia: Pensoft Publishers. pp 157–163.

    Google Scholar 

  113. Wei H, Fan W, Wang X, et al. (2017) Integrating supply and social demand in ecosystem services assessment: A review. Ecosystem Services 25: 15–27. https://doi.org/10.1016/j.ecoser.2017.03.017

    Article  Google Scholar 

  114. Willemen L, Burkhard B, Crossman N, et al. (2015) Editorial: Best practices for mapping ecosystem services. Ecosystem Services 13: 1–5. https://doi.org/10.1016/j.ecoser.2015.05.008

    Article  Google Scholar 

  115. Willemen L, Verburg PH, Hein L, van Mensvoort MEF (2008) Spatial characterization of landscape functions. Landscape and Urban Planning 88: 34–43.

    Article  Google Scholar 

  116. Williams D, Patterson M (2008) Place, Leisure, and Well-being Place. In: Eyles J, Williams A. (eds.), Sense of place, health and quality of life. Aldershot: Ashgate. pp 105–119.

    Google Scholar 

  117. Wohlgemuth T, Nobis MP, Kienast F, Plattner M (2008) Modelling vascular plant diversity at the landscape scale using systematic samples. Journal of Biogeography 35: 1226–1240. https://doi.org/10.1111/j.1365-2699.2008.01884.x

    Article  Google Scholar 

  118. Young J, Watt A, Nowicki P, et al. (2005) Towards sustainable land use: identifying and managing the conflicts between human activities and biodiversity conservation in Europe. Biodiversity & Conservation 14: 1641–1661. https://doi.org/10.1007/s10531-004-0536-z

    Article  Google Scholar 

  119. Zhang D, Huang QX, He CY, Wu JG (2017) Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resources Conservation and Recycling 125: 115–130. https://doi.org/10.1016/j.resconrec.2017.06.003

    Article  Google Scholar 

Download references

Acknowledgments

This paper is the result of the HiFlow-CMA project conducted by alpS and WSL, funded by the Austrian Climate and Energy Fund (ACRP 8th call). We thank the two reviewers for their insightful comments. We also gratefully acknowledge the “Land Vorarlberg” for contributing GIS layers including land-use data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Pazúr.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sauter, I., Kienast, F., Bolliger, J. et al. Changes in demand and supply of ecosystem services under scenarios of future land use in Vorarlberg, Austria. J. Mt. Sci. 16, 2793–2809 (2019). https://doi.org/10.1007/s11629-018-5124-x

Download citation

Keywords

  • Land-use change
  • Future land-use scenarios
  • Regional assessment
  • Ecosystem services
  • Synergies
  • Conflicts