Skip to main content
Log in

Anatomical variation of five plant species along an elevation gradient in Mexico City basin within the Trans-Mexican Volcanic Belt, Mexico

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Change in environmental conditions with altitudinal gradients induces morpho-anatomical variations in plants that have been poorly documented in intertropical regions. Five species with three life forms, cryptophyte (Alchemilla procumbens, Geranium seemannii), hemicryptophyte (Acaena elongata, Lupinus montanus), and phanerophyte (Symphoricarpos microphyllus), distributed along an altitudinal gradient in the Sierra Nevada of central Mexico, were studied. The aims were to identify and evaluate their morpho-anatomical modifications under the hypothesis that the sizes of individuals and of their wood and leaf cell types decrease as elevation increases. Three individuals per species per site were collected at seven locations along the altitudinal gradient (2949-3952 m). Their morpho-anatomical characters were analyzed through multiple regression analyses. Elevation was the variable that best explained anatomical changes in the leaf and wood of the five species. Canopy density and potassium content in the soil also contributed to explain the variation in anatomical variables along the gradient. As elevation increased a bimodal pattern was observed in various anatomical characters as in the leaf width of A. elongata, A. procumbens and G. seemannii and in the vessel diameter of A. procumbens, G. seemannii, and L. montanus. Other features as the vessel diameter of A. elongata, the fiber length of S. microphyllus, and the ray width of A. elongata increased as the elevation increased. Anatomical traits have a tendency to decrease in size but just toward the end of the gradient, which is probably related to changes in canopy density. The plant response to the altitudinal gradient is more focused on anatomical adaptations than morphological variation; it is also species dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera HN (1989) Tratado de Edafología de México. (Treatise on Edaphology of Mexico). Dirección de Publicaciones, Facultad de Ciencias, Universidad Nacional Autónoma de México. Mexico City, Mexico. p 222. (In Spanish)

    Google Scholar 

  • Arias S, Terrazas T (2001) Variación en la anatomía de la madera de Pachycereus pecten-aboriginum (Cactaceae). (Wood anatomical variation of Pachycereus pectenaboriginum (Cactaceae)). Anales del Instituto de Biología, Universidad Nacional Autónoma de México. Serie Botánica 72(2): 157–169. (In Spanish)

    Google Scholar 

  • Black CA, Evans DD, White JL, Ensmiger LE, Clarck FE, Dinaver RC (1965) Methods of Soil Analysis. American Society of Agronomy. Madison, USA. p 768.

    Google Scholar 

  • Briceño B, Azocar A, Fariñas M, Rada F (2000) Características anatómicas de dos especies Lupinus L. de los Andes venezolanos. (Anatomical characteristics of two species Lupinus L. of the Venezuelan Andes). Pittieria 29: 21–31. (In Spanish)

    Google Scholar 

  • Brodribb TJ, Jordan GJ Carpenter RJ (2013) Unified changes in cell size permit coordinated leaf evolution. New Phytologist 199(2): 559–570. https://doi.org/10.1111/nph.12300

    Article  Google Scholar 

  • Cáceres Y, Rada F (2011) ¿Cómo responde la especies leñosa Vaccinum meridionale a la temperatura en su límite altitudinal de distribución en los Andes Tropicales? (How does the woody species Vaccinum meridionale respond to temperature in its altitudinal limit of distribution in the tropical Andes?). Ecotropicos. Caracas 24(1): 80–91. (In Spanish)

    Google Scholar 

  • Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64(7): 887–896. https://doi.org/10.2307/2442382

    Article  Google Scholar 

  • Carlquist S (1994) Anatomy of tropical alpine plants. In: Rundel P, Smith A, Meinzer F (eds.), Tropical Alpine Environment, Plant Form and Function. Cambridge University Press, Cambridge, USA. pp 111–125. https://doi.org/10.1017/ cbo9780511551475.007

  • Carlquist S. Hockman DA (1985) Ecological wood anatomy of the woody southern California Flora. IAWA Bulletin New Series 6(4): 319–347. https://doi.org/10.1163/22941932-90000960

    Article  Google Scholar 

  • Cavieres LA (2000) Variación morfológica de Phacelia secunda J.F. Gmel. (Hydrophyllaceae) a lo largo de un gradiente altitudinal en Chile central. (Morphological variation of Phacelia secunda J.F. Gmel. (Hydrophyllaceae) along an altitudinal gradient in central Chile). Gayana Botánica 57(1): 89–96. (In Spanish) https://doi.org/10.4067/s0717-66432000000100007

    Article  Google Scholar 

  • Cavieres AL Piper LF (2004) Determinantes ecofiosiológicos del límite altitudinal de los árboles. (Eco-physiological determinants of the altitudinal treeline limit of trees). In: Cabrera HM (ed.) Fisiología Ecológica en Plantas. Mecanismos y Respuestas a Estrés en los Ecosistemas. (Ecological Physiology in Plants. Mechanisms and Response to Stress in Ecosystems). Ediciones de la Universidad Católica de Valparaíso, Valparaíso, Chile. pp. 221–234. (In Spanish)

  • Der G, Everitt BS (2002) A Handbook of Statistical Analysis Using SAS. 2nd ed. Chapman & Hall/CRC, London, UK. p 351.

    Google Scholar 

  • Doria G, Fernández-Burgos M, Powell D. Schmidt (2010) Altitudinal leaf variation in Cecropia schereberiana (Urticaceae) in the Luquillo experimental forest, Puerto Rico. Acta Científica 24(1–3): 35–45.

    Google Scholar 

  • Ely F, Torres F, Gavira J (2005a) Morfología y anatomía foliar de Monochaetum meridense (Melastomataceae). (Leaf morphology and anatomy of Monochaetum meridense (Melastomataceae)). Acta Botánica de Venezuela 28(2): 197–212. (In Spanish)

    Google Scholar 

  • Ely F, Torres F, Gavira J (2005b) Relación de la morfoanatomía foliar de tres especies de Miconia (Melastomatácea) con su hábitat y distribución altitudinal en el parque nacional Sierra Nevada de Mérida, Venezuela. (Leaf structure relationships of three species of Miconia (Melastomataceae) with their habitat and altitudinal distribution in the Sierra Nevada National Park, Mérida, Venezuela). Acta Botánica de Venezuela 28(2): 275–300. (In Spanish)

    Google Scholar 

  • Encina-Domínguez JA, Encina-Domínguez FJ, Mata-Rocha E, Valdes-Reyna J (2008) Aspectos estructurales, composición florística y caracterización ecológica del bosque de Oyamel de la Sierra de Zapalinamé, Coahuila, México. (Ecology and structure of the fir forest in Zapalinamé, Coahuila, Mexico). Boletín de la Sociedad Botánica de México 83: 13–24. (In Spanish)

    Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2004) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Ecology 15(5): 688–695. https://doi.org/10.1046/j.0269-8463.2001.00563.x

    Google Scholar 

  • Guerrero-Campo J, Alberto F, Hodgson J, García-Ruiz JM, Montserrat-Martí G. (1999) Plant community patterns in a gypsum area of NE Spain. I. Interactions with topographic factors and soil erosion. Journal of Arid Environments 41(4): 401–410. https://doi.org/10.1006/jare.1999.0492

    Article  Google Scholar 

  • IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bulletin New Series 10(3): 219–332. https://doi.org/10.1163/22941932-90000497

    Article  Google Scholar 

  • Kofidis G, Bosabalidis AM (2008) Effects of altitude and season on glandular hairs and leaf structural traits of Nepeta nuda L. Botanical Studies 49: 363–372.

    Google Scholar 

  • Kofidis G, Bosabalidis M, Moustakas M (2003) Contemporary seasonal and altitudinal variations of leaf structural features in Oregano (Oregarum vulgare L.). Annals of Botany 92(5): 635–645. https://doi.org/10.1093/aob/mcg180

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin-Heidelberg. Germany. p 344.

    Book  Google Scholar 

  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69(4): 577–588. https://doi.org/10.1007/BF00410366

    Article  Google Scholar 

  • Lens F, Luteyn JL, Smets E, Jensen S (2004) Ecological trends in the wood anatomy of Vaccinioideae (Ericaceae s. l.). Flora 199(4): 309–319. https://doi.org/10.1078/0367-2530-0058

    Article  Google Scholar 

  • Luo SZ, Liu GH, Li ZS, et al. (2014) Soil respiration along an altitudinal gradient in a subalpine secondary forest in China. iForest-Biogeosciences and Forestry 8: 526–532. https://doi. org/10.3832/ifor0895-007

    Article  Google Scholar 

  • Mallníkova E, Kukla J, Kuklová M, Balázová M (2013) Altitudinal variation of plant traits: morphological characteristics in Fragaria vesca L. (Rosaceae). Annals of Forest Research 56(1): 79–89.

    Google Scholar 

  • Méndez E (2007) La vegetación de los Altos Andes II. Las vegas del flanco oriental del Cordón del Plata (Mendoza, Argentina). (The vegetation of the High Andes II. Las vegas of the eastern flank of Cordón del Plata (Mendoza, Argentina)). Boletín de la Sociedad Argentina de Botánica 42(3–4): 273–294. (In Spanish)

    Google Scholar 

  • Metcalfe CR, Chalk L (1980) Anatomy of the Dicotyledons: Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject. 2nd ed. Clarendon Press, Oxford, UK. p 276. ISBN 10: 0198543832 ISBN 13: 9780198543831

    Google Scholar 

  • Metcalfe CR, Chalk L (1983) Anatomy of the Dicotyledons: Wood Structure and Conclusion of the General Introduction. 2nd ed. Clarendon Press Oxford, UK. p 296. ISBN 10: 0198545592 / ISBN 13: 9780198545590

    Google Scholar 

  • Mogollón PJ, Martínez A (2010) Variación de la actividad biológica del suelo en un transecto altitudinal de la sierra de San Luís, Estado Falcón. (Variation of soil biological activity in an altitudinal transect in the San Luis Mountains, Falcón State). Agronomía Tropical 59(4): 269–479. (In Spanish)

    Google Scholar 

  • Molina-Montenegro MA (2008) Variación de las pubescencia foliar en plantas y sus implicaciones funcionales a lo largo de gradientes altitudinales. (Variation in leaf pubescence of plants and its functional effects along elevational gradients). Ecosistemas 17(1): 146–154. (In Spanish)

    Google Scholar 

  • Molina-Montenegro MA, Cavieres LA (2010) Variación altitudinal de los atributos morfo-fisiológicos en dos especies de plantas alto-andinas y sus implicaciones contra la fotoinhibición. (Altitudinal variation of morpho-physiological traits in two High-Andean plant species and its effects against the photoinhibition). Gayana Botánica 67(1): 1–11. (In Spanish) https://doi.org/10.4067/S0717-66432010000100001

    Article  Google Scholar 

  • Motomura H, Noshiro S, Mikage M (2007) Variable wood formation and adaptation to the alpine environment of Ephedra pachyclada (Gnetales: Ephedraceae) in the Mustang District, Western Nepal. Annals of Botany 100(2): 315–324. https://10.1093/aob/mcm111

    Article  Google Scholar 

  • Noshiro S, Ikeda H, Joshi L (2010) Distinct altitudinal trends in the wood structure of Rhododendron arboreum (Ericaceae) in Nepal. IAWA Journal 31(4): 443–456. https://doi.org/ 10.1163/22941932-90000034

    Google Scholar 

  • Paradari IC, Jalali SG, Sonboli A, Zarafshar M, Bruschi P (2013) Leaf macro-and micro-morphological altitudinal variability of Carpinus betulus in the Hyrcanian forest (Iran). Journal of Forestry Research 24: 301–307. https://doi.org/10.107/ s11676-013-0353-x

    Article  Google Scholar 

  • Pourtahmasi K, Lotfi N, Bräuning A, Parsapajouh D (2011) Tree-ring width and vessel characteristic of oriental beech (Fagus orientalis) along altitudinal gradient in the Caspian forests, northern Iran. IAWA Journal 32(4): 461–473. https://doi.org/10.1163/22941932-90000071

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Torres F (1987) Supercooling along an altitudinal gradient in Espeletia schultzii, a caulescent giant rosette species. Journal of Experimental Botany 38(188): 491–497. https://doi.org/10.1093/jxb/ 38.3.491

    Article  Google Scholar 

  • Raunkiaer C (1934) The Life Forms of Plants and Statistical Plant Geography. Oxford University Press, Oxford. UK. p 632. https://doi.org/10.2307/2419902

    Google Scholar 

  • Rodríguez-Gamiño ML, López-Blanco J, Vela-Correa G (2013) Indicadores ambientales biofísicos a escala detallada para la planeación territorial en Milpa Alta, Centro de México. (Environmental biophysical indicators at detailed scale for land management in Milpa Alta, Central Mexico). Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM 80: 21–35. (In Spanish)

    Google Scholar 

  • Ruzin SE (1999) Plant Microtechnique and Microscopy. Oxford University Press. Oxford. UK. p 322. https://doi.org/10. 1006/anbo.2000.1231

    Google Scholar 

  • Rzedowski J (1978) Vegetación de México. (Vegetation of Mexico). Limusa, Mexico City, Mexico. p 432. (In Spanish)

    Google Scholar 

  • Salisbury EJ (1928) On the causes and ecological significance of stomatal frequency with special reference to wood land flora. Philosophical Transactions of the Royal Society 216: 1–65. https://doi.org/10.1098/rstb.1928.0001

    Article  Google Scholar 

  • SAS Institute Inc (2008) SAS/STAT User's Guide. Release 9.2. SAS Institute Inc., Cary, USA. p 1120.

  • Sánchez-González A (2004) Análisis Sinecológico, Florístico y Biogeográfico de la Vegetación del Norte de la Sierra Nevada, México. (Synecologic, Floristic and Biogeographic Analysis of the Vegetation of the Northern Sierra Nevada, Mexico). PhD thesis. Colegio de Postgraduados, Posgrado en Botánica, Campus Montecillo, México. (In Spanish)

    Google Scholar 

  • Sánchez-González A, López-Mata L (2003) Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. (Classification and ordination of the vegetation of the north of the Sierra Nevada, along an altitudinal gradient). Anales del Instituto de Biología, Universidad Nacional Autónoma de México. Serie Botánica 74(1): 47–71. (In Spanish)

    Google Scholar 

  • Sánchez-González A, López-Mata L (2005) Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Diversity and Distribution 11: 567–575. https://doi.org/10.1111/j.1366-9516.2005.00186.x

    Article  Google Scholar 

  • Sánchez-González A, López-Mata L, Vibrans H (2006) Composición y patrones de distribución geográfica de la flora del bosque de oyamel del cerro Tláloc, México. (Composition and geographic distribution patterns of the fir forest flora at mount Tlaloc, Mexico. Boletín de la Sociedad Botánica de México 79: 67–78. (In Spanish)

    Google Scholar 

  • Scholz A, Stein A, Choat B, Jansen S (2014) How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA Journal 35(4): 337–355. https://doi.org/10.1163/22941932-00000070

    Article  Google Scholar 

  • Van den Oever L, Bass P, Zandee M (1981) Comparative wood anatomy of Symplocos and latitude and altitude of provenance. IAWA Bulletin New Series 2(1): 3–24. https://doi. org/10.1163/22941932-90000389

    Article  Google Scholar 

  • Yaman B (2008) Variation in quantitative vessel element of Juglans regia wood in the western black sea region of Turkey. Agrociencia 42(3):357–365.

    Google Scholar 

  • Zamora-Natera JF, Terrazas T (2012) Anatomía foliar y de pecíolo de cuatro especies de Lupinus (Fabaceae). (Foliar and petiole anatomy of four species of Lupinus (Fabaceae)). Revista Mexicana de Biodiversidad 83(3): 687–697. (In Spanish) https://doi.org/10.7550/mb.27264

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical Analysis. 4 ed. Prentice Hall, New Jersey. USA. p 929.

    Google Scholar 

  • Zarinkamar F, Tajik S, Soleimanpar S (2011) Effects of altitude on anatomy and concentration of crocin, pricrocin and safranal in Crocus sativus L. Australian Journal of Crop Science 5(7): 831–838.

    Google Scholar 

Download references

Acknowledgments

Thanks to Consejo Nacional de Ciencia y Tecnología (CONACyT) for the PhD scholarship to MSJN (265120). The facilities and support of the Instituto de Biología, UNAM, are appreciated. We also thank the people of Tequesquinahuac and other Ejidos for being able to work in their forests. The art work by Diana Martínez and Julio César Montero-Rojas is also highly appreciated. The comments, suggestions, and constructive criticisms of Dr. Anna V. Kopanina and anonymous reviewers are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauro López-Mata.

Electronic supplementary material

11629_2017_4442_MOESM1_ESM.pdf

Anatomical variation of five plant species along an elevation gradient in Mexico City basin within the Trans-Mexican Volcanic Belt, Mexico

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Noriega, P.M.S., Terrazas, T., López-Mata, L. et al. Anatomical variation of five plant species along an elevation gradient in Mexico City basin within the Trans-Mexican Volcanic Belt, Mexico. J. Mt. Sci. 14, 2182–2199 (2017). https://doi.org/10.1007/s11629-017-4442-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-017-4442-8

Keywords

Navigation