Journal of Mountain Science

, Volume 14, Issue 7, pp 1292–1302 | Cite as

Dynamic assessment of rainfall-induced shallow landslide hazard

  • Yang Tang
  • Kun-long Yin
  • Lei Liu
  • Ling Zhang
  • Xiao-lin Fu
Article
  • 78 Downloads

Abstract

The assessment of rainfall-induced shallow landslide hazards is a significant issue in the Three Gorges Reservoir area in China due to the rapid development of land in the past two decades. In this study, a probabilistic analysis method that combines TRIGRS and the point-estimate method for evaluating the hazards of shallow landslides have been proposed under the condition of rainfall over a large area. TRIGRS provides the transient infiltration model to analyze the pore water pressure during a rainfall. The point-estimate method is used to analyze the uncertainty of the soil parameters, which is performed in the geographic information system (GIS). In this paper, we use this method to evaluate the hazards of shallow landslides in Badong County, Three Gorges Reservoir, under two different types of rainfall intensity, and the results are compared with the field investigation. The results showed that the distribution of the hazard map is consistent with the observed landslides. To some extent, the distribution of the hazard map reflects the spatial and temporal distribution of the shallow landslide caused by rainfall.

Keywords

Shallow landslide TRIGRS Pointestimate method Rainfall Hazard assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvioli M, Baum RL (2016) Parallelization of the trigrs model for rainfall-induced landslides using the message passing interface. Environmental Modelling & Software 81: 122–135. DOI: 10.1016/j.envsoft.2016.04.002CrossRefGoogle Scholar
  2. Baecher GB, Christian JT (2003) Reliability and statistics in geotechnical engineering. Wiley New York.Google Scholar
  3. Baum RL (2008) TRIGRS-a FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0.Open-File Report.Google Scholar
  4. Breiman L (2001) Random forests. Machine Learning 45(1): 5–32. DOI: 10.1023/A:1010933404324CrossRefGoogle Scholar
  5. Bui DT, Nguyen QP, Hoang ND, et al. (2016) A novel fuzzy k -nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 1–17. DOI: 10.1007/s10346-016-0708-4Google Scholar
  6. Caramia P, Carpinelli G, Varilone P (2010) Point estimate schemes for probabilistic three-phase load flow. Electric Power Systems Research 80(2): 168–175. DOI: 10.1016/j.epsr.2009.08.020CrossRefGoogle Scholar
  7. Chacón J, Irigaray C, Fernández T, et al. (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4): 341–411. DOI: 10.1007/s10064-006-0064-zCrossRefGoogle Scholar
  8. Chai B, Yin KL, Du J, et al. (2013) Correlation between incompetent beds and slope deformation at Badong town in the Three Gorges reservoir, China. Environmental earth sciences 69: 209–223. DOI: 10.1007/s12665-012-1948-9CrossRefGoogle Scholar
  9. Chowdhury R, Flentje P, Bhattacharya G (2010) Geotechnical slope analysis. Quarterly Journal of Engineering Geology & Hydrogeology 4): 505–508. DOI: 10.1201/9780203864203Google Scholar
  10. Colkesen I, Sahin EK, Kavzoglu T (2016) Susceptibility mapping of shallow landslides using kernel-based gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences 118(2016): 53–64. DOI: 10.1016/j.jafrearsci.2016.02.019CrossRefGoogle Scholar
  11. Dietrich WE, Reiss R, Hsu M, Montgomery DR. 1995. A processbased model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes 9: 383–400. DOI: 10.1002/hyp.3360090311Google Scholar
  12. Fell R, Corominas J, Bonnard C, et al. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol. 102(3-4): 85–98. DOI: 10.1016/j.enggeo.2008.03.022CrossRefGoogle Scholar
  13. Frattini P, Crosta GB, Fusi N, et al. (2004) Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment. Engineering Geology 73(3-4): 277–295. DOI: 10.1016/j.enggeo.2004.01.009CrossRefGoogle Scholar
  14. Godt JW, Baum RL, Savage WZ, et al. (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology 102(3-4): 214–226. DOI: 10.1016/j.enggeo.2008.03.019CrossRefGoogle Scholar
  15. Hoang ND, Bui DT (2015) A novel relevance vector machine classifier with cuckoo search optimization for spatial prediction of landslides. Journal of Computing in Civil Engineering, In Press(5). DOI: 10.1061/(ASCE)CP.1943-5487. 0000557Google Scholar
  16. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resource Research 36(7): 1897–1910. DOI: 10.1029/2000WR900090CrossRefGoogle Scholar
  17. Kavzoglu T, Sahin EK, Colkesen I (2015) Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology 192: 101–112. DOI: 10.1016/j.enggeo.2015.04.004CrossRefGoogle Scholar
  18. King D, Bourennane H, Isambert M, et al. (1999) Relationship of the presence of a non-calcareous clay–loam horizon to dem attributes in a gently sloping area. Geoderma 89(1-2): 95–111. DOI: 10.1016/S0016-7061(98)00124-4CrossRefGoogle Scholar
  19. Kuriakose SL, Devkota S, Rossiter DG, et al. (2009) Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the western ghats of kerala, india. Catena 79(1): 27–38. DOI: 10.1016/j.catena.2009.05.005CrossRefGoogle Scholar
  20. Lee JH, Park HJ (2015) Assessment of shallow landslide susceptibility using the transient infiltration flow model and gis-based probabilistic approach. Landslides 13(5): 1–19. DOI: 10.1007/s10346-015-0646-6Google Scholar
  21. Liu C, Wu C (2008) Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology 55(4): 907–915. DOI: 10.1007/s00254-007-1042-xCrossRefGoogle Scholar
  22. Liu L, Yin KL, Wang JJ, et al. (2016a) Dynamic evaluation of regional landslide hazard due to rainfall:a case study in Wanzhou central district,Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering 35(3): 559–569 (In Chinese). DOI: 10.13722/j.cnki.jrme.2015.0495Google Scholar
  23. Liu L, Yin KL, Zhang J (2016b) Estimate method of the quaternary deposits thickness and its application in Wanzhou central district, Three Gorges Reservoir region. Geological Science and Technology Information 35(1): 178–180 (In Chinese). DOI: 1000-7849(2016)01-0177-07Google Scholar
  24. Li YF, Chi YY (2011) Rainfall induced landslide risk at Lushan, Taiwan. Engineering Geology 123(1-2): 113–121. DOI: 10.1016/j.enggeo.2011.03.006CrossRefGoogle Scholar
  25. Lombardo L, Bachofer F, Cama M, et al. (2016) Exploiting maximum entropy method and aster data for assessing debris flow and debris slide susceptibility for the giampilieri catchment (north -eastern sicily, italy). Earth Surface Processes & Landforms 41(12): 1776–1789. DOI: 10.1002/esp.3998CrossRefGoogle Scholar
  26. Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research 30(4): 1153–1171. DOI: 10.1029/93WR 02979CrossRefGoogle Scholar
  27. Muntohar AS, Liao HJ (2010) Rainfall infiltration: infinite slope model for landslides triggering by rainstorm. Nat Hazards 54(3): 967–984. DOI: 10.1007/s11069-010-9518-5CrossRefGoogle Scholar
  28. Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. The 8th Congress of the International Association of Engineering Geology. Vancouver 21-28.Google Scholar
  29. Park HJ, Lee JH, Woo I (2013) Assessment of rainfall-induced shallow landslide susceptibility using a gis-based probabilistic approach. Engineering Geology 161(14): 1–15. DOI: 10.1016/j.enggeo.2013.04.011CrossRefGoogle Scholar
  30. Salciarini D, Godt, JW, Savage WZ, et al. (2008) Modeling landslide recurrence in Seattle, Washington, USA. Eng Geol., 102(3), 227–237. DOI: 10.1016/j.enggeo.2008.03.013CrossRefGoogle Scholar
  31. Silva F, Lambe TW, Marr WA (2008) Probability and risk of slope failure. Journal of Geotechnical and Geoenvironmental Engineering 134: 1691–1699. DOI: 10.1061/(ASCE)1090-0241(2008)134:12(1691)CrossRefGoogle Scholar
  32. Sorbino G, Sica C, Cascini L. (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53(2): 313–332. DOI: 10.1007/s11069-009-9431-yCrossRefGoogle Scholar
  33. Tran TV, Lee G, An H, et al. (2017) Comparing the performance of TRIGRS and TiVaSS in spatial and temporal prediction of rainfall-induced shallow landslides. Environmental Earth Sciences 76(8): 315. DOI: 10.1007/s12665-017-6635-4CrossRefGoogle Scholar
  34. Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Env. 65: 167–184. DOI: 10.1007/s10064-005-0023-0CrossRefGoogle Scholar
  35. Van Westen CJ, (2000) The modelling of landslide hazards using GIS. Surv Geophys. 21(2-3): 241–255. DOI: 10.1023/A:1006794127521CrossRefGoogle Scholar
  36. Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: A survey and results of new tests. Pattern Recognition 44(2): 330–349. DOI: 10.1016/j.patcog.2010.08.011CrossRefGoogle Scholar
  37. Viet TT, Lee G, Thu TM, et al. (2016) Effect of DEM resolution on shallow landslide modeling using TRIGRS. Natural Hazards Review. DOI: 10.1061/(ASCE)NH.1527-6996.0000233Google Scholar
  38. Wang FD (1995) Preliminarily study on features of shallow accumulation landslide and relationship between it and precipitation. Hydrogeology and Engineering Geology 1): 20–23 (In Chinese). DOI: 10.16030/j.cnki.Issn.1000-3665. 1995.01.006Google Scholar
  39. Xie M, Esaki T, Zhou G (2004) GIS based probabilistic mapping of landslide hazard using a three dimensional deterministic model. Natural Hazards 33(2): 265–282. DOI: 10.1023/B:NHAZ.0000037036.01850.0dCrossRefGoogle Scholar
  40. Xu JC, Shang YQ, Chen KF, Yang JF (2005) Analysis of shallow landslides stability under intensive rainfall. Chinese Journal of Rock Mechanics and Engineering 24(18): 3246–3251 (in Chinese). DOI: 1000-6915(2005)18-3246-0Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yang Tang
    • 1
  • Kun-long Yin
    • 2
  • Lei Liu
    • 3
  • Ling Zhang
    • 4
  • Xiao-lin Fu
    • 5
  1. 1.Institute of Geological SurveyChina University of GeosciencesWuhan, HubeiChina
  2. 2.Faculty of EngineeringChina University of GeosciencesWuhan, HubeiChina
  3. 3.Wuhan Central China Geological SurveyWuhan, HubeiChina
  4. 4.Wuhan regional climate centerWuhan, HubeiChina
  5. 5.China Institute of Geo-Environment MonitoringBeijingChina

Personalised recommendations