Aberegg I, Egli M, Sartori G, et al. (2009) Modelling spatial distribution of soil types and characteristics in a high Alpine valley (Val di Sole, Trentino, Italy). Studi Trentini di Scienze Naturali 85: 39–50.
Google Scholar
Ad-hoc-AG Boden (2005) Bodenkundliche Kartieranleitung, fith ed. Hannover: E. Schweizerbart'sche Verlagsbuchhandlung. (In German)
Google Scholar
Aeschimann D, Lauber K, Moser DM, et al. (2004) Flora alpina. Bern: Haupt Verlag.
Google Scholar
Andreetta A, Ciampalini R, Moretti P, et al. (2011) Forest humus forms as potential indicators of soil carbon storage in Mediterranean environments. Biology and Fertility of Soils 47 (1): 31–40. DOI: 10.1007/s00374-010-0499-z
Article
Google Scholar
Andreetta A, Cecchini G, Bonifacio E, et al. (2016) Tree or soil? Factors influencing humus form differentiation in Italian forests. Geoderma 264, Part A: 195–204. DOI: 10.1016/j.geoderma.2015.11.002
Article
Google Scholar
Ascher J, Sartori G, Graefe U, et al. (2012) Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions? Biology and Fertility of Soils 48 (6): 709–725. DOI: 10.1007/s00374-012-0670-9
Article
Google Scholar
Bednorz F, Reichstein M, Broll G, et al. (2000) Humus forms in the forest-alpine tundra ecotone at Stillberg (Dischmatal, Switzerland): Spatial heterogeneity and classification. Arctic, Antarctic, and Alpine Research 32 (1): 21–29. DOI: 10.2307/1552406
Article
Google Scholar
Bernier N, Ponge JF (1994) Humus form dynamics during the sylvogenetic cylce in a mountain spruce forest. Soil Biology & Biochemistry 26 (2): 183–220. DOI: 10.1016/0038-0717(94) 90161-9
Article
Google Scholar
Bernier N, Gillet F (2012) Structural relationships among vegetation, soil fauna and humus form in a subalpine forest ecosystem: a Hierarchical Multiple Factor Analysis (HMFA). Pedobiologia 55 (6): 321–334. DOI: 10.1016/j.pedobi.2012. 06.004
Article
Google Scholar
Blasi C (2010) La vegetazione d’Italia con carta delle Serie di Vegetazione in scala 1:500000. Roma: Palombi. (In Italian)
Google Scholar
Böhner J, Antonic O (2009) Land surface parameters specific to topo-climatology. In: Hengl T, Reuter HI (eds.), Geomorphometry -Concepts, Software, Applications. Amsterdam: Elsevier. pp 195–226.
Chapter
Google Scholar
Böhner J, Köthe R, Conrad O, et al. (2002) Soil regionalisation by means of terrain analysis and process parameterization. In: Micheli E, Nachtergaele F, Montanarella L (eds.), Soil Classification 2001. The European Soil Bureau Research Report No. 7, EUR 20398 EN, Luxembourg. pp 213–222.
Google Scholar
Bonifacio E, Falsone G, Petrillo M (2011) Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy. Biology and Fertility of Soils 47 (5): 555–566. DOI: 10.1007/s00374-011-0568-y
Article
Google Scholar
Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, third ed. Wien, New York: Springer. (In German)
Google Scholar
Broll G, Brauckmann HJ, Overesch M, et al. (2006) Topsoil characterization -recommendations for revision and expansion of the FAO-Draft (1998) with emphasis on humus forms and biological features. Journal of Plant Nutrition and Soil Science 169 (3): 453–461. DOI: 10.1002/jpln.200521961
Article
Google Scholar
Carletti P, Vendramin E, Pizzeghello D, et al. (2009) Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil 315(1-2): 47–65. DOI: 10.1007/s11104-008-9732-z
Article
Google Scholar
Cornwell WK, Cornelissen JHC, Amatangelo K, et al. (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11 (10): 1065–1071. DOI: 10.1111/j.1461-0248.2008.01219.x
Article
Google Scholar
Costantini EAC, Fantappié M, L’Abate G (2013) Climate and Pedoclimate of Italy. In: Costantini EAC, Dazzi C (eds.), The Soils of Italy. Dordrecht, Heidelberg, New York: Springer. pp. 19–37.
Chapter
Google Scholar
Descheemaeker K, Muys B, Nyssen J, et al. (2009) Humus form development during forest restoration in exclosures of the Tigray Highlands, northern Ethiopia. Restoration Ecology 17 (2): 280–289. DOI: 10.1111/j.1526-100X.2007.00346.x
Article
Google Scholar
Diekmann M (2003) Species indicator values as an important tool in applied plant ecology -a review. Basic and Applied Ecology 4 (6): 493–506. DOI: 10.1078/1439-1791-00185
Article
Google Scholar
Dierschke H (1994) Pflanzensoziologie. Stuttgart: Ulmer. (In German)
Google Scholar
Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? Journal of Ecology 95 (6): 1167–1180. DOI: 10.1111/j.1365-2745.2007.01294.x
Article
Google Scholar
Egli M, Mirabella A, Sartori G, et al. (2006) Effect of north and south exposure on weathering rates and clay mineral formation in Alpine soils. Catena 67 (3): 155–174. DOI: 10.1016/j.catena.2006.02.010
Article
Google Scholar
Egli M, Sartori G, Mirabella A, et al. (2009) Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149 (1): 124–136. DOI: 10.1016/j.geoderma.2008.11.027
Article
Google Scholar
Ellenberg H, Weber HB, Düll R, et al. (1992) Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of plants in Central Europe). Scripta Geobotanica 18. Göttingen: Goltze. (In German, with English summaries)
Ewald J (1999) Relationships between floristic and micro site variability in coniferous forests of the Bavarian Alps. Phytocoenologia 29 (3): 327–344. DOI: 10.1127/phyto/29/1999/327
Article
Google Scholar
Ewald J (2000) The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Applied Vegetation Science 3 (1): 123–134. DOI: 10.2307/1478926
Article
Google Scholar
Ewald J (2009) Epigeic bryophytes do not improve bioindication by Ellenberg values in mountain forests. Basic and Applied Ecology 10 (5): 420–426. DOI: 10.1016/j.baae.2008.09.003
Article
Google Scholar
Ewald J, Hennekens S, Conrad S, et al. (2013) Spatial and temporal patterns of Ellenberg nutrient values in forests of Germany and adjacent regions -a survey based on phytosociological databases. Tuexenia 33: 93–109.
Google Scholar
Fischer HS (2015) On the combination of species cover values from different vegetation layers. Applied Vegetation Science 18 (1): 169–170. DOI: 10.1111/avsc.12130
Article
Google Scholar
Gobat J-M, Aragno M, Matthey W (2010) Le sol vivant: bases de pédologie, biologie des sols, third ed. Lausanne: PPUR Presses polytechniques et universitaires romandes. (In French)
Google Scholar
Hellwig N, Anschlag K, Broll G (2016) A fuzzy logic based method for modeling the spatial distribution of indicators of decomposition in a high mountain environment. Arctic, Antarctic, and Alpine Research 48 (4): 623–635. DOI: 10.1657/AAAR0015-073
Article
Google Scholar
Hellwig N, Graefe U, Tatti D, et al. (2017) Upscaling the spatial distribution of enchytraeids and humus forms in a high mountain environment on the basis of GIS and fuzzy logic. European Journal of Soil Biology 79: 1–13. DOI: 10.1016/j.ejsobi. 2017.01.001
Article
Google Scholar
Hiller B, Müterthies A, Holtmeier FK, et al. (2002) Investigations on spatial heterogeneity of humus forms and natural regeneration of Larch (Larix decidua Mill.) and Swiss Stone Pine (Pinus cembra L.) in an alpine timberline ecotone (Upper Engadine, Central Alps, Switzerland). Geographica Helvetica 57 (2): 81–90. DOI: 10.5194/gh-57-81-2002
Article
Google Scholar
Hiller B, Nuebel A, Broll G, et al. (2005) Snowbeds on Silicate Rocks in the Upper Engadine (Central Alps, Switzerland)-Pedogenesis and Interactions among Soil, Vegetation, and Snow Cover. Arctic, Antarctic, and Alpine Research 37 (4): 465–476.
Article
Google Scholar
Käfer J, Witte JPM (2004) Cover-weighted averaging of indicator values in vegetation analyses. Journal of Vegetation Science 15 (5): 647–652. DOI: 10.1111/j.1654-1103.2004.tb02306.x
Article
Google Scholar
Klaus VH, Kleinebecker T, Boch S, et al. (2012) NIRS meets Ellenberg's indicator values: Prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics. Ecological Indicators 14 (1): 82–86. DOI: 10.1016/j.ecolind.2011.07.016
Article
Google Scholar
Küchler M, Küchler H, Bedolla A, et al. (2015) Response of Swiss forests to management and climate change in the last 60 years. Annals of Forest Science 72 (3): 311–320. DOI: 10.1007/s13595-014-0409-x
Article
Google Scholar
Lalanne A, Bardat J, Lalanne-Amara F, et al. (2008) Opposite responses of vascular plant and moss communities to changes in humus form, as expressed by the Humus Index. Journal of Vegetation Science 19 (5): 645–652. DOI: 10.3170/2007-8-18431
Article
Google Scholar
Lalanne A, Bardat J, Lalanne-Amara F, et al. (2010) Local and regional trends in the ground vegetation of beech forests. Flora 205 (7): 484–498. DOI: 10.1016/j.flora.2009.12.032
Article
Google Scholar
Landolt E, Bäumler B, Erhardt A, et al. (2010) Ecological indicator values and biological attributes of the flora of Switzerland and the Alps. Bern: Haupt. (In German)
Google Scholar
Li P, Wang Q, Endo T, et al. (2010) Soil organic carbon stock is closely related to aboveground vegetation properties in coldtemperate mountainous forests. Geoderma 154 (3): 407–415. DOI: 10.1016/j.geoderma.2009.11.023
Article
Google Scholar
Ma HP, Yang XL, Guo QQ, et al. (2016) Soil organic carbon pool along different altitudinal level in the Sygera Mountains, Tibetan Plateau. Journal of Mountain Science 13 (3): 476–483. DOI: 10.1007/s11629-014-3421-6
Article
Google Scholar
Mansfield ER, Helms BP (1982) Detecting multicollinearity. The American Statistician 36(3a): 158–160. DOI: 10.1080/00031305.1982.10482818
Article
Google Scholar
Meng X-L, Rosenthal R, Rubin DB (1992) Comparing correlated correlation coefficients. Psychological Bulletin 111 (1): 172–175. DOI: 10.1037/0033-2909.111.1.172
Article
Google Scholar
Minasny B, McBratney AB (2006) A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences 32 (9): 1378–1388. DOI: 10.1016/j.cageo.2005.12.009
Article
Google Scholar
Möller H (1997) Reaktions-und Stickstoffzahlen nach Ellenberg als Indikatoren für die Humusform in terrestrischen Waldökosystemen im Raum Hannover. Tuexenia 17: 349–365. (In German)
Google Scholar
Moore ID, Grayson R, Ladson A (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes 5 (1): 3–30. DOI: 10.1002/hyp.3360050103
Article
Google Scholar
Myers L, Sirois MJ (2006) Spearman Correlation Coefficients, Differences between, Encyclopedia of Statistical Sciences. Hoboken: John Wiley & Sons, Inc.
Google Scholar
Nieto-Lugilde D, Lenoir J, Abdulhak S, et al. (2015) Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography 38 (6): 578–589. DOI: 10.1111/ecog.00954
Article
Google Scholar
Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry 35 (7): 935–945. DOI: 10.1016/S0038-0717(03)00149-4
Article
Google Scholar
Ponge JF (2013) Plant–soil feedbacks mediated by humus forms: A review. Soil Biology and Biochemistry 57: 1048–1060. DOI: 10.1016/j.soilbio.2012.07.019
Article
Google Scholar
Ponge JF, Sartori G, Garlato A, et al. (2014) The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: A direct gradient approach. Geoderma 226-227: 290–299. DOI: 10.1016/j.geoderma.2014.02.022
Article
Google Scholar
Provincia Autonoma di Trento and Servizio Foreste e Fauna (n.d.) I Dati Della Pianificazione Forestale Aggiornati al 31/12/2004. Trento. (In Italian)
Provincia Autonoma di Trento (2006-2008) LIDAR rilievo 2006/2007/2008. (Available online at: http://dati.trentino.it/dataset/lidar-rilievo-2006-2007-2008-link-alservizio-di-download, accessed on 03 Sep. 2016)
Roudier P, Hewitt AE, Beaudette DE (2012) A conditioned Latin hypercube sampling algorithm incorporating operational constraints. In: Minasny B, Malone BP, McBratney AB (eds.), Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia. London: CRC Press. pp 227–231.
Chapter
Google Scholar
Sartori G, Mancabelli A (2009) Carta dei suoli del Trentino: scala 1:250.000. Museo Tridentino di Scienze Naturali di Trento, Centro di Ricerca per l’Agrobiologia e la Pedologia di Firenze. (In Italian)
Google Scholar
Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11 (2): 225–244. DOI: 10.2307/3236802
Article
Google Scholar
Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38 (2): 406–416. DOI: 10.1111/j.1365-2699.2010.02407.x
Article
Google Scholar
Szymura TH, Szymura M, Maciol A (2014) Bioindication with Ellenberg's indicator values: A comparison with measured parameters in Central European oak forests. Ecological Indicators 46: 495–503. DOI: 10.1016/j.ecolind.2014.07.013
Article
Google Scholar
Wagener J (2014) Die Vegetation der Region Val di Sole in den italienischen Alpen. Master thesis, University of Osnabrueck, Osnabrueck. (In German)
Google Scholar
Wookey PA, Aerts R, Bardgett RD, et al. (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology 15 (5): 1153–1172. DOI: 10.1111/j.1365-2486.2008.01801.x
Article
Google Scholar
Zackrisson O, Nilsson MC, Dahlberg A, et al. (1997) Interference mechanisms in conifer-Ericaceae-feathermoss communities. Oikos 78 (2): 209–220. DOI: 10.2307/3546287
Article
Google Scholar
Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12 (1): 47–56. DOI: 10.1002/esp.3290120107
Article
Google Scholar