Ashraf S, Brabyn L, Hicks BJ (2012) Image data fusion for the remote sensing of freshwater environments. Applied Geography 32(2): 619–628. DOI: 10.1016/j.apgeog.2011.07.010
Article
Google Scholar
Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P. R. China. Arctic, Antarctic and Alpine Research 39(2): 200–209. DOI: 10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2
Article
Google Scholar
Bekker MF (2005) Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA. Arctic, Antarctic, and Alpine Research 37: 97–107. DOI: 10.1657/1523-0430(2005)037 [0097:PFBTEA]2.0.CO;2
Article
Google Scholar
Bekker MF, Malanson GP (2008) Linear forest patterns in subalpine environments. Progress in Physical Geography 32(6): 635–653. DOI: 10.1177/0309133308101384
Article
Google Scholar
Bekker MF, Clark JT, Jackson MW (2009) Landscape metrics indicate differences in patterns and dominant controls of ribbon forests in the Rocky Mountains, USA. Applied Vegetation Science 12: 237–249. DOI: 10.1111/j.1654-109X.2009.01021.x
Article
Google Scholar
Billings WD (1969) Vegetational pattern near alpine timberline as affected by fire-snowdrift interactions. Vegetatio 19(1–6): 192–207. DOI: 10.1007/BF00259010
Google Scholar
Butler DR, Malanson GP, Bekker MF, Resler LM (2003) Lithologic, structural, and geomorphic controls on ribbon forest patterns in a glaciated mountain environment. Geomorphology 55(1): 203–217. DOI: 10.1016/S0169-555X(03)00140-5
Article
Google Scholar
Dial RJ, Scott ST, Sullivan PF, et al. (2016) Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska. Global Change Biology 22: 1841–1856. DOI: 10.1111/gcb.13207
Article
Google Scholar
Fagre DB (2009) Introduction: Understanding the importance of alpine treeline ecotones in mountain ecosystems. In: Butler DR, et al. (eds.), The Changing Alpine Treeline: The Example of Glacier National Park, MT, USA. Developments in Earth Surface Processes No. 12. Elsevier, Amsterdam, The Netherlands. pp 1–9.
Chapter
Google Scholar
Gamache I, Payette S (2004) Height growth response of treeline black spruce to recent climate warming across the foresttundra of eastern Canada. Journal of Ecology 92: 835–845. DOI: 10.1111/j.0022-0477.2004.00913.x
Article
Google Scholar
Hättenschwiler S, Smith WK (1999) Seedling occurrence in alpine treeline conifers: a case study from the central Rocky Mountains, USA. Acta Oecologica 20: 219–224. DOI: 10.1016/S1146-609X(99)80034-4
Article
Google Scholar
Hijioka Y, Lin E, Pereira JJ, et al. (2014) Asia. In: Barros VR, Field CB, et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, NY. pp 1327–1370.
Google Scholar
Holtmeier FK (2009) Mountain timberlines: ecology, patchiness, and dynamics. Netherlands: Kluwer Academic Publishers. p 437. DOI: 10.1007/978-1-4020-9705-8
Book
Google Scholar
Holtmeier FK, Broll G (2007) Treeline advance–driving processes and adverse factors. Landscape Online 1: 1–33. DOI: 10.3097/LO.200701
Article
Google Scholar
Holtmeier FK, Broll G (2010) Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Physical Geography 31(3): 203–233. DOI: 10.2747/0272-3646.31.3.203
Article
Google Scholar
Kharuk VI, Ranson KJ, Im ST, et al. (2009) Response of Pinus sibirica and Larix sibirica to climate change in Southern Siberian alpine forest-tundra ecotone. Scandinavian Journal of Forest Research 24(2): 130–39. DOI: 10.1080/02827580902845823
Article
Google Scholar
Kharuk VI, Im ST, Dvinskaya ML, et al. (2010a) Climateinduced mountain treeline evolution in southern Siberia. Scandinavian Journal of Forest Research 25(5): 446–454. DOI: 10.1080/02827581.2010.509329
Article
Google Scholar
Kharuk VI, Ranson KJ, Im ST, et al. (2010b) Spatial distribution and temporal dynamics of high elevation forest stands in southern Siberia. Global Ecology and Biogeography Journal 19: 822–830. DOI: 10.1111/j.1466-8238.2010.00555.x
Article
Google Scholar
Kharuk VI, Dvinskaya ML, Im ST, et al. (2011) The potential impact of CO2 and air temperature increases on krummholz’s transformation into arborescent form in the southern Siberian Mountains. Arctic, Antarctic, and Alpine Research 43: 593–600. DOI: 10.1657/1938-4246-43.4.593
Article
Google Scholar
Kharuk VI, Ranson KJ, Im ST, et al. (2013a) Tree Line Structure and Dynamics at the Northern Limit of the Larch Forest: Anabar Plateau, Siberia, Russia. Arctic, Antarctic, and Alpine Research 45(4): 526–537. DOI: 10.1657/1938-4246-45.4.526
Article
Google Scholar
Kharuk VI, Im ST, Oskorbin PA, et al. (2013b) Siberian pine decline and mortality in southern Siberian Mountains. Journal of Forest Ecology and Management 310: 312–320. DOI: 10.1016/j.foreco.2013.08.042
Article
Google Scholar
Kharuk VI. Im ST, Petrov IA, et al. (2017) Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. Forest Ecology and Management 384: 191–199. DOI: 10.1016/j.foreco.2016.10.050
Article
Google Scholar
Kullman L (2007) Treeline population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for treeline theory and climate change ecology. Journal of Ecology 95: 41–52. DOI: 10.1111/j.1365-2745.2006.01190.x
Article
Google Scholar
Lenoir J, Gegout JC, Marquet PA, et al. (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884): 1768–1771. DOI: 10.1126/science.1156831
Article
Google Scholar
Liang E, Wang Y, Piao S, et al. (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences 113(16): 4380–4385. DOI: 10.1073/pnas.1520582113
Article
Google Scholar
Máliš F, Kopecký M, Petřík P, et al. (2016) Life stage, not climate change, explains observed tree range shifts. Global Change Biology 22(5): 1904–1914. DOI: 10.1111/gcb.13210
Article
Google Scholar
Minnich RA (1984) Snow drifting and timberline dynamics on Mount San Gorgonio, California, USA. Arctic and Alpine Research 16: 395–412.
Article
Google Scholar
Petrov IA, Kharuk VI, Dvinskaya ML, et al. (2015) Reaction of coniferous trees in the Kuznetsk Alatau alpine forest tundra ecotone to climate change. Contemporary Problems of Ecology 8(4): 423–430. DOI: 10.1134/S1995425515040137
Article
Google Scholar
Reiners WA, Lang GE (1979) Vegetational patterns and processes in the balsam fir zone, White Mountains New Hampshire. Ecology 60(2): 403–417. DOI: 10.2307/1937668
Article
Google Scholar
Resler LM, Butler DR, Malanson GP (2005) Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Physical Geography 26: 112–125. DOI: 10.2747/0272-3646.26.2.112
Article
Google Scholar
Resler LM (2006) Geomorphic controls of spatial pattern and process at alpine treeline. The Professional Geographer 58: 124–138.
Article
Google Scholar
Smith WK, Germino MJ, Hancock TE, et al. (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiology 23: 1101–1112. DOI: 10.1093/treephys/23.16.1101
Article
Google Scholar
Sprugel DG (1976) Dynamic structure of wave-regenerated Abies balsamea forests in the northeastern United States. Journal of Ecology 64: 889–911. DOI: 10.2307/2258815
Article
Google Scholar
Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Climatic Change 50(1): 77–109. DOI: 10.1023/A:1010632015572
Article
Google Scholar
Tomback DF, Chipman KG, Resler LM, et al. (2014) Relative Abundance and Functional Role of Whitebark Pine at Treeline in the Northern Rocky Mountains. Arctic, Antarctic, and Alpine Research 46(2): 407–418. DOI: 10.1657/1938-4246-46.2.407
Article
Google Scholar
Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index–SPEI. Journal of Climate 23: 1696–1718. DOI: 10.1175/2009JCLI 2909.
Article
Google Scholar