Skip to main content
Log in

An improved temperature vegetation dryness index (iTVDI) and its applicability to drought monitoring

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index (iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai GY, Xue Y, Hu Y C (2007) Soil Moisture Retrieval from MODIS data in Northern China Plain using thermal inertia Model. International Journal of Remote Sensing 28(16): 3567–3581. https://doi.org/10.1080/01431160601034886

    Article  Google Scholar 

  • Cao J, Hu JM, Tao Y (2012) An index for the interface between the Indian summer monsoon and the East Asian summer monsoon. Journal of Geophysical Research 117(D18): 119–130. https://doi.org/10.1029/2012JD017841

    Article  Google Scholar 

  • Cao J, Yao P, Wang L, et al. (2014) Summer rainfall variability in low-latitude highlands of China and subtropical Indian Ocean Dipole. Journal of Climate 27(2):880–892.

    Article  Google Scholar 

  • Cao X, Feng Y, Wang J (2016) An improvement of the Ts-NDVI space drought monitoring method and its applications in the Mongolian plateau with MODIS, 2000–2012. Arabian Journal of Geosciences 9(6): 1–14.

    Article  Google Scholar 

  • Carlson TN, Dodd JK, Benjamin SG, et al. (1981) Satellite estimation of the surface energy balance, moisture availability and thermal inertia. Journal of Applied Meteorology 20(1): 67–87. https://doi.org/10.1175/1520-0450(1981)020<0067: SEOTSE>2.0.CO;2

    Article  Google Scholar 

  • Carlson TN, Buffum MJ (1989) On estimating the total daily evapotranspiration from remote surface temperature measurements. Remote Sensing Environment 29(2): 197–207. https://doi.org/10.1016/0034-4257(89)90027-8

    Article  Google Scholar 

  • Carlson TN, Perry EM, Schmugge TJ (1990) Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. Agricultural and Forest Meteorology 52(90):45–69.https://doi.org/10.1016/0168-1923(90)90100-K

    Article  Google Scholar 

  • Carlson TN, Capehart WJ, Gilies RR (1995a) A new look at the simplified method for remote sensing of daily evapotranspiration, Remote Sensing of Environment 54(2): 161–167. https://doi.org/10.1016/0034-4257(95)00139-R

    Article  Google Scholar 

  • Carlson TN, Gillies RR, Schmugge TJ (1995b) An interpretation of methodologies for indirect measurement of soil water content. Agricultural and Forest Meteorology 77(3): 191–205. https://doi.org/10.1016/0168-1923(95)02261-U

    Article  Google Scholar 

  • Carlson TN (2007) An overview of the ‘triangle method’ for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 7(8): 1612–1629. https://doi.org/ 10.3390/s7081612

    Article  Google Scholar 

  • Chen CF, Son NT, Chang LY, et al. (2011) Monitoring of soil moisture variability in relation to rice cropping systems in the Vietnamese Mekong Delta using MODIS data. Applied Geography 31(2): 463–475. https://doi.org/10.1016/j.apgeog. 2010.10.002

    Article  Google Scholar 

  • Dalezios NR, Blanta A, Spyropoulos N (2013) Remotely sensed spatiotemporal features of agrometeorological drought, in Advances in Meteorology. Climatology and Atmospheric Physics 409–414. https://doi.org/10.1007/978-3-642-29172-2_58

    Chapter  Google Scholar 

  • Alyaari A, Wigneron JP, Ducharne A, et al. (2014) Global-scale evaluation of two satellite-based passive microwave soil moisture data sets (SMOS and AMSR-E) with respect to modelled estimates. EGU General Assembly Conference. EGU General Assembly Conference Abstracts. pp 181–195.

    Google Scholar 

  • Gao ZQ, Gao W, Chang NB (2011) Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation and Geoinformation 13(3): 495–503. https://doi.org/10.1039/c39940002047

    Article  Google Scholar 

  • Gillies RR, Carlson TN (1995) Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology 34(4): 745–756. https://doi.org/10.1175/1520- 0450(1995)034<0745:TRSOSS>2.0.CO;2

    Article  Google Scholar 

  • Gillies RR, Carlson TN, Cui J, et al. (1997) Verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index NDVI and surface radiant temperature. International Journal of Remote Sensing 18(15): 3145–3166. https://doi.org/10.1080/014311697217026

    Article  Google Scholar 

  • Goetz SJ (1997) Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing 18(1): 71–94. https://doi.org/10.1080/014311697219286

    Article  Google Scholar 

  • Goward SN, Xue Y, Czajkowski KP (2002) Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sensing of Environment 79(2–3): 225–242. https://doi.org/10.1016/S0034-4257(01)00275-9

    Article  Google Scholar 

  • Jeong SJ, Ho CH, Jeong JH (2009) Increase in vegetation greenness and decrease in springtime warming over east Asia. Geophysical Research Letters 36(2):436–448. https://doi.org/ 10.1029/2008GL036583

    Article  Google Scholar 

  • Kaufmann RK, Zhou L, Myneni RB, et al. (2003) The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophysical Research Letters 30(22). https://doi.org/10.1029/2003GL018251

    Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP, et al. (2010) The SMOS mission: New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE 98(5): 666–687.

    Article  Google Scholar 

  • Kogan FN (1990) Remote sensing of weather impacts on vegetation in nonhomogeneous area. International Journal of Remote Sensing 11(8): 1405–1420. https://doi.org/10.1080/ 01431169008955102

    Article  Google Scholar 

  • Kogan FN (1995) Application of vegetation index and brightness temperature for drought detection. Advances in Space Research 15(11): 91–100.

    Article  Google Scholar 

  • Lambin EF, Ehrlich D (1996) The surface temperaturevegetation index space for land cover and land cover-change analysis. International Journal of Remote Sensing 17(3): 463–487. https://doi.org/10.1080/01431169608949021

    Article  Google Scholar 

  • Liu ZY, Notaro M, Kutzbach J (2006) Assessing global vegetation-climate feedbacks from observation. Journal of climate 19(5): 787–814. https://doi.org/10.1175/JCLI3658.1

    Article  Google Scholar 

  • Mcffters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7): 1425–1143.

    Article  Google Scholar 

  • Moran MS, Clarke TR, Inoue Y, et al. (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment 49(3): 246–263. https://doi.org/10.1016/0034-4257(94)90020-5

    Article  Google Scholar 

  • Moran MS, Rahman AF, Washburne JC, et al. (1996) Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semi-arid grassland. Agricultural and Forest Meteorology 80(2–4): 87–109. https://doi.org/10.1016/0168-1923(95)02292-9

    Article  Google Scholar 

  • Murray T, Verhoef A (2007) Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: I. A universal approach to calculate thermal inertia. Agricultural and Forest Meteorology 147(1): 80–87. https://doi.org/10.1016/j.agrformet.2007.07.004

    Article  Google Scholar 

  • Nemani R, Pierce L, Running S, et al. (1993) Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology 2(3): 548–557.

    Article  Google Scholar 

  • Nishida K, Nemani RR, Glassy J, et al. (2003a) Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Transactions on Geoscience and Remote Sensing 41(2): 493–501. https://doi.org/10.1109/TGRS.2003.811744

    Article  Google Scholar 

  • Nishida K, Nemani RR, Running SW, et al. (2003b) An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research 108(108):469–474. https://doi.org/10.1029/2002JD002062

    Google Scholar 

  • Patel NR, Anapashsha R, Kumar S, et al. (2009) Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. International Journal of Remote Sensing 30(1): 23–39. https://doi.org/10.1080/01431160802108497

    Article  Google Scholar 

  • Ridd M (1995) Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy of cities. International Journal of Remote Sensing 16(12): 2165–2185. https://doi.org/10.1080/01431169508954549

    Article  Google Scholar 

  • Rahimzadeh BP, Omasa K, Shimizum Y (2012) Comparative evaluation of the vegetation dryness index (VDI), the temperature vegetation dryness index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semiarid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing 68:1–12.

    Article  Google Scholar 

  • Rouse J, Haas R, Schell J, et al. (1974) Monitoring Vegetation Systems in the Great Plains with ERTS. Nasa Special Publication 351: 309.

    Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of soil moisture status. Remote Sensing of Environment 79(2–3): 213–224. https://doi.org/10.1016/ S0034-4257(01)00274-7

    Article  Google Scholar 

  • Schwartz MD (1996) Examining the spring discontinuity in daily temperature ranges. Journal of Climate 9(9): 803–808. https://doi.org/10.1175/1520-0442(1996)009<0803:ETSDID >2.0.CO;2

    Article  Google Scholar 

  • Son NT, Chen CF, Chen CR, et al. (2012) Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation 18(1): 417–427. https://doi.org/10.1016/j.jag. 2012.03.014

    Article  Google Scholar 

  • Sun D, Kafatos M (2007) Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters 34(24): 497–507. https://doi.org/10.1029/2007GL031485

    Article  Google Scholar 

  • Sun YJ, Wang JF, Zhang RH, et al. (2005) Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology 80(1): 37–48. https://doi.org/10.1007/s00704-004-0079-y

    Article  Google Scholar 

  • Tao Y, Cao J, Hu JM, et al. (2013) A cusp catastrophe model of mid–long-term landslide evolution over low latitude highlands of China. Geomorphology 187(5): 80–85. https://doi.org/10.1016/j.geomorph.2012.12.036

    Article  Google Scholar 

  • Thiruvengadachari S, Gopalkrishna HR (1993) An integrated PC environment for assessment of drought. International Journal of Remote Sensing 14(17): 3201–3208. https://doi.org/ 10.1080/01431169308904434

    Article  Google Scholar 

  • Wang C, Qi S, Niu Z, et al. (2004) Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Canadian Journal of Remote Sensing 30(5): 671–679. https://doi.org/10.5589/m04-029

    Article  Google Scholar 

  • Yuan L, Tao HP, Wu H (2007) Dynamic drought monitoring in Guangxi using revised temperature vegetation dryness index. Wuhan University Journal of Natural Sciences 12(4): 663–668. https://doi.org/10.1007/s11859-006-0315-7

    Article  Google Scholar 

  • Zhang F, Zhang LW, Wang XZ, et al. (2013) Detecting Agro-Droughts in Southwest of China Using MODIS Satellite Data. Journal of Integrative Agriculture 12(1): 159–168. https://doi. org/10.1016/S2095-3119(13)60216-6

    Article  Google Scholar 

  • Qin GR (2013) Four years continuous drought disaster in Yunnan Province make us do more efforts in water conservancy. (In Chinese) http://www.chinanews.com/ ny/2013/04-22/4752209.shtml (Accessed on 22 April 2013)

    Google Scholar 

  • Didan K (2015) MOD13A3 MODIS/Terra vegetation Indices Monthly L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/modis/mod13a3.006

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0601601), National Natural Science Foundation of China (Grants Nos. U1502233, 41405001), the Jiangsu Collaborative Innovation Center for Climate Change and Ph.D. Programs Foundation of Ministry of Education of China (20135301120010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Rw., Wang, H., Hu, Jm. et al. An improved temperature vegetation dryness index (iTVDI) and its applicability to drought monitoring. J. Mt. Sci. 14, 2284–2294 (2017). https://doi.org/10.1007/s11629-016-4262-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4262-2

Keywords

Navigation