Journal of Mountain Science

, Volume 14, Issue 4, pp 771–781

A modified Hoek-Brown failure criterion considering the damage to reservoir bank slope rocks under water saturation-dehydration circulation

  • Xin-gang Wang
  • Jia-ding Wang
  • Tian-Feng Gu
  • Bao-qin Lian
Article

Abstract

After water is impounded in a reservoir, rock mass in the hydro-fluctuation belt of the reservoir bank slope is subject to water saturationdehydration circulation (WSDC). To quantify the rate of change of rock mechanical properties, samples from the Longtan dam area were measured with uniaxial compression tests after different numbers (1, 5, 10, 15, and 20) of simulated WSDC cycles. Based on the curves derived from these tests, a modified Hoek- Brown failure criterion was proposed, in which a new parameter was introduced to model the cumulative damage to rocks after WSDC. A case of an engineering application was analyzed, and the results showed that the modified Hoek-Brown failure criterion is useful. Under similar WSDC-influenced engineering and geological conditions, rock mass strength parameters required for analysis and evaluation of rock slope stability can be estimated according to this modified Hoek-Brown failure criterion.

Keywords

Modified Hoek-Brown criterion Reservoir bank slope Hydro-fluctuation belt Water saturation-dehydration circulation Damage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agan C, Unal M (2013) Performance of Pressuremeter Tests to Estimate the Position of the Sliding Surface: A Case Study in Zonguldak, Turkey. Geotechnical Testing Journal 36 (4): 584–591. DOI: 10.1520/GTJ20120059CrossRefGoogle Scholar
  2. Agan C (2014) Determination of the deformation modulus of dispersible-intercalated-jointed cherts using the Menard Pressuremeter Test. International Journal of Rock Mechanics and Mining Sciences 65 (1): 20–28. DOI: 10.1016/j.ijrmms. 2013.11.004CrossRefGoogle Scholar
  3. Agan C (2015) Engineering geological and geomechanical assessments of the proposed Mezra dam site (Sanliurfa, Turkey). Arabian Journal of Geosciences 8 (4): 2371–2381. DOI: 10.1007/s12517-014-1317-yCrossRefGoogle Scholar
  4. Agan C (2016a) A preliminary study on the conservation and polishing performance of Sanliurfa limestones as a traditional building material. Bulletin of Engineering Geology and the Environment 75 (1):13–25. DOI: 10.1007/s10064-015-0729-6CrossRefGoogle Scholar
  5. Agan C (2016b) Prediction of squeezing potential of rock masses around the Suruc Water tunnel. Bulletin of Engineering Geology and the Environment 75 (2): 451–468. DOI: 10.1007/s10064-015-0758-1CrossRefGoogle Scholar
  6. Agar JG, Morgenstern NR, Scott J (1985) Shear strength and stress–strain behavior of Athabasca oil sand at elevated temperatures and pressure. Canadian Geotechnical Journal 24 (1): 1–10. DOI: 10.1016/0148-9062(87)92308-4CrossRefGoogle Scholar
  7. Alonso EE, Romero E, Hoffmann C, et al. (2005) Expansive bentonite-sand mixtures in cyclic controlled suction drying and wetting. Engineering Geology 81: 213–226. DOI: 10.1016/j.enggeo.2005.06.009CrossRefGoogle Scholar
  8. Althaus E, Friz-Töpfer A, Lempp C, et al. (1994) Effects of water on strength and failure mode of coarse-grained granites at 300°C. Rock Mechanics and Rock Engineering 27 (1): 1–21. DOI: 10.1007/BF01025953CrossRefGoogle Scholar
  9. ASTM (2001) Standard practices for preparing rock core specimens and determining dimensional and shape tolerances. American Society for Testing and Materials. D4543.Google Scholar
  10. Baud P, Zhu W, Wong T (2000) Failure mode and weakening effect of water on sandstone. Journal of Geophysical Research 105: 16371–16389. DOI: 10.1029/2000JB900087CrossRefGoogle Scholar
  11. Beck K, Al-Mukhtar M(2014) Cyclic wetting–drying ageing test and patina formation on tuffeau limestone. Environmental Earth Sciences 71: 2361–2372. DOI: 10.1007/s12665-013-2637-zCrossRefGoogle Scholar
  12. Chan KS, Fossum AF, Munson DE (1997) A damage mechanics treatment of creep failure in rock salt. International Journal of Damage Mechanics 6 (2): 121–151. DOI: 10.1177/105678 959700600201CrossRefGoogle Scholar
  13. Doostmohammadi R, Moosavi M, Mutschler T, et al. (2009) Influence of cyclic wetting and drying on swelling behavior of mudstone in south west of Iran. Environmental Geology 58: 999–1009. DOI: 10.1007/s00254-008-1579-3CrossRefGoogle Scholar
  14. Dunning JD, Petrovski D, Schuyler J, et al. (1984) The effects of aqueous chemical environment on crack propagation in quartz. Journal of Geophysical Research: Solid Earth 89: 4115–4123. DOI: 10.1029/JB089iB06p04115CrossRefGoogle Scholar
  15. Evje S, Hiorth A, Madland MV, et al. (2009) A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media 4 (4): 755–788. DOI: 10.3934/nhm.2009.4.755CrossRefGoogle Scholar
  16. Pellet FL, Keshavarz M, Boulon M (2013) Influence of humidity conditions on shear strength of clay rock discontinuities. Engineering Geology 157: 33–38. DOI: 10.1016/j.enggeo.2013.02.002CrossRefGoogle Scholar
  17. Goudie AS (1999) Experimental salt weathering of limestones in relation to rock properties. Earth Surface Processes and Landforms 24: 715–724. DOI: 10.1002/(SICI)1096-9837CrossRefGoogle Scholar
  18. Guillaume S, Olivier C, Farimah M (2014) Weathering of a limetreated clayey soil by drying and wetting cycles. Engineering Geology 18: 281–289. DOI: 10.1016/j.enggeo.2014.08.013Google Scholar
  19. He KQ, Li XR, Yan XQ, et al. (2008) The landslides in the Three Gorges Reservoir Region, China and the effects of water storage and rain on their stability. Environmental Geology 55 (1): 55–63. DOI: 10.1007/s00254-007-0964-7CrossRefGoogle Scholar
  20. He KQ, Wang SQ, Du W et al. (2010) Dynamic features and effects of rainfall on landslides in the Three Gorges Reservoir region, China: using the Xintan landslide and the large Huangya landslide as the examples. Environmental Earth Sciences 59 (6): 1267–1274. DOI: 10.1007/s12665-009-0114-5CrossRefGoogle Scholar
  21. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. Journal of Geotechnical and Geoenvironmental Engineering 106(GT9): 1013–1035. DOI: 10.1016/0148-9062 (81)90766-XGoogle Scholar
  22. Hoek E (1983) Strength of jointed rock masses. Geotechnique 33: 187–223. DOI: 10.1680/geot.1983.33.3.187CrossRefGoogle Scholar
  23. Hoek E, Brown ET (1997) Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences 34 (8): 1165–1186. DOI: 10.1016/S1365-1609(97)80069-XCrossRefGoogle Scholar
  24. Hoek E, Marinos P, Benissi M (1998) Applicability of the geological strength index(GSI) classification for very weak and sheared rock masses. Bulletin of Engineering Geology and the Environment 57 (2): 151–160. DOI: 10.1007/s100640050031CrossRefGoogle Scholar
  25. Hoek E, Carran-Torres C, Corkum B (2002) Hoek-Brown failure criterion-2002 edition. In: Proceedings of NARMS-TAC, Minging Innovation and Technology, Toronto. pp 267–273Google Scholar
  26. Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences 43 (2): 203–215. DOI:/10.1016/j.ijrmms.2005.06.005CrossRefGoogle Scholar
  27. Igwe O, Mode W, Nnebedum O, et al. (2014) The analysis of rainfall-induced slope failures at Iva Valley area of Enugu State. Nigeria. Environmental Earth Sciences 71: 2465–2480. DOI: 10.1007/s12665-013-2647-xCrossRefGoogle Scholar
  28. Jiang JW, Ehret D, Xiang W, et al. (2011) Numerical simulation of Qiaotou Landslide deformation caused by drawdown of the Three Gorges Reservoir, China. Environmental Earth Sciences 62 (2): 411–419. DOI: 10.1007/s12665-010-0536-0CrossRefGoogle Scholar
  29. Johan C, Lars D (2008) An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations. International Journal of Rock Mechanics and Mining Sciences 45 (6): 831–847. DOI:10.1016/j.ijrmms.2007.10.004CrossRefGoogle Scholar
  30. Kachanov ML (1999) Rupture time under rheological condition. International Journal of Fracture 97(1/4): 11–18. DOI: 10.1023/A:1018671022008CrossRefGoogle Scholar
  31. Kaya A (2016a) Geotechnical Assessment of a Slope Stability Problem in the Citlakkale Residential Area (Giresun, NE Turkey). Bulletin of Engineering Geology and the Environment. DOI: 10.1007/s10064-016-0896-0Google Scholar
  32. Kaya A, Akgün A, Karaman K, et al. (2015) Understanding the Mechanism of a Slope Failure on Nearby a Highway Tunnel Route by Different Slope Stability Analysis Methods: A Case from NE Turkey, Bulletin of Engineering Geology and the Environment 3 (75): 945–958. DOI: 10.1007/s10064-015-0770-5Google Scholar
  33. Kaya A, Alemdag S, Dag S, et al. (2016b) Stability Assessment of High-steep Cut Slope Debris on a Landslide (Gumushane, NE Turkey). Bulletin of Engineering Geology and the Environment 1 (75): 89–99. DOI: 10.1007/s10064-015-0753-6CrossRefGoogle Scholar
  34. Krajcinovic D, Silva MAG (1982) Statistical aspects of the continuous damage theory. International Journal of Solids and Structures 18 (7): 551–562. DOI: 10.1016/0020-7683(82)90039-7CrossRefGoogle Scholar
  35. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology 107 (1): 83–89. DOI: 10.1115/1.3225775CrossRefGoogle Scholar
  36. Lepore C, Kamal SA, Shanahan P, et al. (2012) Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environmental Earth Sciences 66 (6): 1667–1681. DOI: 10.1007/s12665-011-0976-1CrossRefGoogle Scholar
  37. Li DY, Yin KL, Leo C (2010) Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environmental Earth Sciences 60 (4): 677–687. DOI: 10.1007/s12665-009-0206-2CrossRefGoogle Scholar
  38. Li D, Wong LNY, Liu G, et al. (2012) Influence of water content and anisotropy on the strength and deformability of low porosity meta-sedimentary rocks under triaxial compression. Engineering Geology 126: 46–66. DOI: 10.1016/j.enggeo.2011.12.009CrossRefGoogle Scholar
  39. Liang H, Li P, Zhou A (2007) Chemical characteristics of saturated loose rocks in Badong, Three Gorges reservoir. In: Proceedings of 12th International Symposium on Water-Rock Interaction (WRI-12), Kunming. pp 1399–1402Google Scholar
  40. Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flush. Bulletin of Engineering Geology and the Environment 60: 84–92. DOI: 10.1007/s100640000090CrossRefGoogle Scholar
  41. Martin RJ, Durham WB (1975) Mechanics of crack growth in quartz. Journal of Geophysical Research 80: 4837–4844. DOI: 10.1029/JB080i035p04837CrossRefGoogle Scholar
  42. Nara Y, Morimoto K, et al. (2012) Influence of relative humidity on fracture toughness of rock: implications for subcritical crack growth. International Journal of Solids and Structures 49: 2471–2481. DOI: 10.1016/j.ijsolstr.2012. 05.009CrossRefGoogle Scholar
  43. Nicholson DT (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms 26: 819–838. DOI: 10.1002/esp.228CrossRefGoogle Scholar
  44. Nowamooz H, Masrouri F (2009) Shrinkage/swelling of compacted clayey loose and dense soils. Comptes Rendus Mecanique 337: 781–790. DOI: 10.1016/j.crme.2009.10.002CrossRefGoogle Scholar
  45. Reviron N, Reuschlé T, et al. (2009) The brittle deformation regime of water saturated siliceous sandstones. Geophysical Journal International 178 (3): 1766–1778. DOI: 10.1111/j.1365-246X.2009.04236.xCrossRefGoogle Scholar
  46. Saada Z, Maghous S, Garnier D (2012) Stability analysis of rock slopes subjected to seepage forces using the modified Hoek–Brown criterion. International Journal of Rock Mechanics & Mining Sciences 55: 45–54. DOI: 10.1016/j.ijrmms.2012.06.010CrossRefGoogle Scholar
  47. Thomas B, Radu S, Regina AK, et al. (2008) A Hoek-Brown criterion with intrinsic material strength factorization. International Journal of Rock Mechanics and Mining Sciences 45 (2): 210–222. DOI: 10.1016/j.ijrmms.2007.05.003CrossRefGoogle Scholar
  48. Tokashiki N, Aydan O (2011) Kita-Uebaru natural rock slope failure and its back analysis. Environmental Earth Sciences 62: 25–31. DOI: 10.1007/s12665-010-0492-8CrossRefGoogle Scholar
  49. Van TT, Beck K, Al-Mukhtar M (2007) Accelerated weathering tests on two highly porous limestones. Environmental Geology 52 (2): 283–292. DOI: 10.1007/s00254-006-0532-6CrossRefGoogle Scholar
  50. Wang LL, Bornert M, Héripré E, et al. (2014a) Irreversible deformation and damage in argillaceous rocks induced by wetting/drying. Journal of Applied Geophysics 107: 108–118. DOI: 10.1016/j.jappgeo.2014.05.015CrossRefGoogle Scholar
  51. Wang LL, Pouya A., Halphen B., et al. (2014b) Modeling the internal stress filed in argillaceous rocks under humidification/desiccation. International Journal for Numerical and Analytical Methods in Geomechanics 38 (16): 1664–1682. DOI: 10.1002/nag.2267CrossRefGoogle Scholar
  52. Wang XG, Hu B, Tang HM, et al (2016) A Constitutive Model of Granite Shear Creep under Moisture. Journal of Earth Science 27 (4): 677–685. DOI: 10.1007/s12583-016-0709-1.CrossRefGoogle Scholar
  53. Wasantha PLP, Ranjith PG (2014) Water-weakening Behaviour of Hawkesbury Sandstone in Brittle Regime. Engineering Geology 178: 91–101. DOI: 10.1016/j.enggeo.2014.05.015CrossRefGoogle Scholar
  54. Yadav SK, Chakrapani GJ (2006) Dissolution kinetics of rockwater interactions and its implications. Current Science 90 (7): 932–937Google Scholar
  55. Yang XJ, Hou DG, Tao ZG, et al. (2015) Stability and remote real-time monitoring of the slope slide body in the Luoshan mining area. International Journal of Mining Science and Technology 25: 761–765. DOI: 10.1016/j.ijmst.2015.07.010CrossRefGoogle Scholar
  56. Yeh HF, Lee CH (2013) Soil water balance model for precipitation induced shallow landslides. Environmental Earth Sciences 70 (6): 2691–2701. DOI: 10.1007/s12665-013-2326-yCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xin-gang Wang
    • 1
    • 2
  • Jia-ding Wang
    • 1
  • Tian-Feng Gu
    • 1
  • Bao-qin Lian
    • 2
  1. 1.State Key Laboratory of Continental DynamicsDepartment of Geology, Northwest UniversityXi’anChina
  2. 2.School of Geology Engineering and SurveyingChang’ an UniversityXi’ anChina

Personalised recommendations