Journal of Mountain Science

, Volume 14, Issue 2, pp 282–295 | Cite as

Relict glacial landscape in the Sierra Baguales Mountain Range (50°-51° S): evidence of glaciation dynamics and types in the eastern foothills of the southern Patagonian Andes

  • José Miguel Araos
  • Jacobus Philiphus Le Roux
  • Néstor Mauricio Gutierrez


The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range (SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field (SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift, which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum (LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations. This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26 m Equilibrium Line Altitude (ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio (AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.


Glacial morphology Sierra Baguales Ice sheet glaciations Alpine glaciations Middle Holocene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful for grants from the “Becas de Doctorado en Chile” Scholarships Program and “Gastos Operacionales para Proyecto de Tesis Doctoral” of CONICYT. Juan MacLean and his family kindly allowed access to the farms Las Cumbres and Baguales and Juan Pablo Riquez allowed access to the farm Verdadera Argentina. Juan Carlos Aravena and Rodrigo Villa-Martinez of the Universidad de Magallanes, José Luis Oyarzun, and Juan José San Martin provided much-appreciated logistical support. Ricardo Arce, Mauricio Gonzales, Mike Kaplan and Carly Peltier lent invaluable assistance in field activities. Le Roux was supported by Project CONICYT/FONDAP/15090013.


  1. Benn D, Hulton N (2010) An Excel TM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36(5): 605–610. DOI: 10.1016/j.cageo.2009.09.016CrossRefGoogle Scholar
  2. Benn D, Lehmkuh l (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65: 15–29. DOI: 10.1016/S1040-6182(99)00034-8CrossRefGoogle Scholar
  3. Benn D, Ballantyne C (2005) Palaeoclimatic reconstruction from Loch Lomond readvance glaciers in the West Drumochter Hills. Scotland. Journal of Quaternary Science 20(6): 577–592. DOI: 10.1002/jqs.925CrossRefGoogle Scholar
  4. Bentley M (1997) Relative and radiocarbon chronology of adjacent former outlet glaciers in the Chilean Lake District. Journal of Quaternary Science 12: 25–33.CrossRefGoogle Scholar
  5. Blaauw M, Van der Plicht J, Van Geel B (2004) Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported ‘reservoir effect’? Quaternary Science Reviews 23: 1537–1542. DOI: 10.1016/j.quascirev.2004.04.002CrossRefGoogle Scholar
  6. Bostelmann J, Le Roux J, Vásquez A, et al. (2013) Burdigalian deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, depositional environment and vertebrate fossils. Andean Geology 40(3): 458–489. DOI: 10.5027/andgeoV40n3-a04Google Scholar
  7. Caldenius C (1932) Quaternary glaciations in Patagonia and Tierra del Fuego. Geografiska Annaler 14: 1–164.CrossRefGoogle Scholar
  8. Carlson A, Murray D, Anslow F, et al. (2010) Assessing the paleo-forcings of southeastern Patagonia deglaciation using General Circulation Model Simulations. American Geophysical Union, Fall Meeting 2010, Abstract #GC23H-04.Google Scholar
  9. Casassa G, Rodriguez J, Loriaux T (2014) A new glacier inventory for the Southern Patagonia Icefield and areal changes 1986–2000. In: Global Land Ice Measurements from Space. Springer, Berlin. pp 639–660. DOI: 10.1007/978-3-540-79818-7_27Google Scholar
  10. Clapperton C (1993) Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101(3–4): 189–208. DOI: 10.1016/0031-0182(93)90012-8CrossRefGoogle Scholar
  11. Condom T, Coudrain A, Sicart J, et al. (2007) Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10 degrees N-55 degrees S). Global and Planetary Change 59(1–4): 189–202. DOI: 10.1016/j.gloplacha.2006.11.021CrossRefGoogle Scholar
  12. Coronato A, Meglioli M, Rabassa J (2004) Glaciations in the Magellan Straits and Tierra del Fuego, Southernmost South America. In: Ehlers J and Gibbard P (Eds.) Quaternary Glaciations: Extent and Chronology. Part III: South America, Asia, Africa, Australia and Antarctica. Quaternary Book Series, Elsevier, Amsterdam. pp 45–48. DOI: 10.1016/S1571-0866(04)80110-6Google Scholar
  13. Charrier R, Pinto L, Rodriguez M (2007) Tectonostratigraphic evolution of the Andean orogen in Chile. In: The Geology of Chile. The Geological Society Publishing House. Bath, UK. pp 21–115.Google Scholar
  14. DGA (1987) National water balance. Direccion General de Aguas Tech. Rep 60 pp.Google Scholar
  15. Dahl S, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. The Holocene 6: 381–398. DOI: 10.1177/095968369600600401CrossRefGoogle Scholar
  16. Denton G, Lowell T, Heusser C, et al. (1999) Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue Drift in the area of the Southern Lake District, Seno Reloncaví and Isla Grande de Chiloé, Chile. Geografiska Annaler. Series A Physical Geography 81: 167–229. DOI: 10.1111/1468-0459.00057CrossRefGoogle Scholar
  17. Douglass D, Bockhein J (2006) Soil-forming rates and processes on Quaternary moraines near Lago Buenos Aires, Argentina. Quaternary Research 65: 293–307. DOI: 10.1016/j.yqres.2005.08.027CrossRefGoogle Scholar
  18. Douglas D, Singer B, Kaplan M, et al. (2005) Evidence of early Holocene glacial advances in southern South America from cosmogenic surface-exposure dating. Geology 33(3): 237–240. DOI: 10.1130/G21144.1CrossRefGoogle Scholar
  19. Ehlers J, Gibbard P (2007) The extent and chronology of Cenozoic global glaciations. Quaternary International 164: 6–20. DOI: 10.1016/j.quaint.2006.10.008CrossRefGoogle Scholar
  20. Fogwill C, Kubik P (2005) A glacial stage spanning the Antarctic Cold Reversal in Torres del Paine (51° S), Chile, based on preliminary cosmogenic exposure ages. Geografiska Annaler, Series A: Physical Geography 87(2): 403–408.CrossRefGoogle Scholar
  21. Foster D, Brocklehurst S, Gawthorpe R (2008) Small valley glaciers and the effectiveness of the glacial buzzsaw in the northern Basin and Range, USA. Geomorphology 102(3): 624–639. DOI: 10.1016/j.geomorph.2008.06.009CrossRefGoogle Scholar
  22. García J, Kaplan M, Hall B, et al. (2012) Glacier expansion in southern Patagonia throughout the Antarctic Cold Reversal. Geology 40(9): 859–862. DOI: 10.1130/G33164.1CrossRefGoogle Scholar
  23. Garreaud R (2007) Precipitation and Circulation Covariability in the Extratropics. Journal of Climate 20: 4789–4797. DOI: 10.1175/JCLI4257.1CrossRefGoogle Scholar
  24. Glasser N, Jansson K, Harrison S, et al. (2008) The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Science Reviews 27(3–4): 365–390. DOI: 10.1016/j.quascirev.2007.11.011CrossRefGoogle Scholar
  25. Gutierrez N, Le Roux J, Bostelmann E, et al. (2013) Geology and stratigraphy of Sierra Baguales, Ultima Esperanza Province, Magallanes, Chile. Bolletino di Geofisica Teorica ed Applicata 54: 327–330.Google Scholar
  26. Heusser C (2003) Ice age southern Andes: a chronicle of palaeoecological events. New York University. p 260.Google Scholar
  27. Hoek E, Diederichs M (2006) Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences 43: 203–215. DOI: 10.1016/j.ijrmms.2005.06.005CrossRefGoogle Scholar
  28. Hostetler S, Clark P (1997) Climatic controls of western US glaciers at the Last Glacial Maximum. Quaternary Science Reviews 16(6): 505–511. DOI: 10.1016/S0277-3791(96)00116-3CrossRefGoogle Scholar
  29. Hughes P, Gibbard P, Woodward J (2007) Geological controls on Pleistocene glaciation and cirque form in Greece. Geomorphology 88(3–4): 242–253. DOI: 10.1016/j.geomorph.2006.11.008CrossRefGoogle Scholar
  30. Hulton N, Purves R, McCulloch R, et al. (2002) The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21: 233–241. DOI: 10.1016/S0277-3791(01)00103-2CrossRefGoogle Scholar
  31. Kaplan M, Strelin J, Schaefer J, et al. (2011) In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: Implications for late-glacial climate chronology. Earth and Planetary Science Letters 309(1): 21–32. DOI: 10.1016/j.epsl.2011.06.018CrossRefGoogle Scholar
  32. Kaplan M, Hein R, Hubbard A, et al. (2009) Can glacial erosion limit the extent of glaciation? Geomorphology 103(2): 172–179. DOI: 10.1016/j.geomorph.2008.04.020CrossRefGoogle Scholar
  33. Kaplan M, Douglas D, Singer B, et al. (2005) Cosmogenic nuclide chronology of pre-last glacial maximum moraines at Lago Buenos Aires, 46ºS, Argentina. Quaternary Research 63: 301–315. DOI: 10.1016/j.yqres.2004.12.003CrossRefGoogle Scholar
  34. Kaplan M, Ackert R, Singer B, et al. (2004) Cosmogenic nuclide chronology of millennial-scale glacial advances during Oisotope stage 2 in Patagonia. Geological Society of America Bulletin 116(3–4): 308–321. DOI: 10.1130/B25178.1CrossRefGoogle Scholar
  35. Lagabrielle Y, Labaume P, Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29: 4. DOI: 10.1029/2009TC002588CrossRefGoogle Scholar
  36. Le Roux J, Puratich J, Mourgues F, et al. (2010) Estuary deposits in the Río Baguales Formation (Chattian-Aquitanean), Magallanes Province, Chile. Andean Geology 37(2): 329–344.Google Scholar
  37. Lorrey A, Fauchereau N, Stanton C, et al. (2013) The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Climate Dynamics 42(11): 3039–3060. DOI: 10.1007/s00382-013-1876-8Google Scholar
  38. Lowell T, Heusser J, Andersen G, et al. (1995) Interhemispheric correlation of late Pleistocene events. Science 269: 1541–1549. DOI: 10.1126/science.269.5230.1541CrossRefGoogle Scholar
  39. Marinos V, Marinos P, Hoek E (2005) The geological Strength index: applications and limitations. Bulletin of Engineering Geology and the Environment 64: 55–65. DOI: 10.1007/s10064-004-0270-5CrossRefGoogle Scholar
  40. Marden C (1997) Late-glacial fluctuations of South Patagonian Icefield, Torres del Paine National Park, southern Chile. Quaternary International 38–39: 61–68. DOI: 10.1016/S1040-6182(96)00019-5CrossRefGoogle Scholar
  41. Meierding T (1982) Late Pleistocene glacial equilibriumlinealtitudes in the Colorado front range: a comparison of methods. Quaternary Research 18: 289–310. DOI: 10.1016/0033-5894(82)90076-XCrossRefGoogle Scholar
  42. McCulloch R, Bentley M, Purves R, et al. (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15(4): 409–417. DOI: 10.1002/1099-1417(200005)15:4<409::AID-JQS539>3.0.CO;2-#CrossRefGoogle Scholar
  43. Mercer J (1983) Cenozoic glaciation in the Southern Hemisphere. Annual Review of Earth and Planetary Sciences 11: 99–132. DOI: 10.1146/annurev.ea.11.050183.000531CrossRefGoogle Scholar
  44. Mercer J (1976) Glacial history of southernmost South America. Quaternary Research 6(2): 125–166. DOI: 10.1016/0033-5894(76)90047-8CrossRefGoogle Scholar
  45. Mercer J (1967) Southern hemisphere glacier atlas. Office Chief on Research and Development.650 Department of the Army. Technical report 67-76-ES. p 325.Google Scholar
  46. Meyer I, Wagner S (2008) The Little Ice Age in southern Patagonia: comparison between paleoecological reconstructions and downscaled model output of a GCM simulation. Pages News 16: 12–13.Google Scholar
  47. Mitchell S, Montgomery D (2006) Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quaternary Research 65(1): 96–107. DOI: 10.1016/j.yqres.2005.08.018CrossRefGoogle Scholar
  48. Montgomery D, Balco G, Willett S (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7): 579–582. DOI: 10.1130/0091-7613(2001)029<0579:CTATMO>2.0.CO;2CrossRefGoogle Scholar
  49. Moreno P (2004) Millennial-scale climate variability in northwest Patagonia over the last 15 000 yr. Journal of Quaternary Science 19(1): 35–47. DOI: 10.1002/jqs.813CrossRefGoogle Scholar
  50. Moreno P, Francois J, Moy C, et al. (2010) Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 38(8): 727–730. DOI: 10.1130/G30962.1CrossRefGoogle Scholar
  51. Nesje A, Dahl S (2003) The ‘Little Ice Age’–only temperature? The Holocene 13(1): 139–145. DOI: 10.1191/0959683603hl603faCrossRefGoogle Scholar
  52. Nesje A, Dahl S (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? Journal of Quaternary Science 15(6): 587–601. DOI: 10.1002/1099-1417(200009)15:6<587::AID-JQS533>3.0.CO;2-2CrossRefGoogle Scholar
  53. Nordenskjöld O (1899) Geological map of the Magellan territories with explanatory notes. Kungl. Boktryckeriet. PA Norstedt & Söner 1(3): 81–85.Google Scholar
  54. Oerlemans J (1992) Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen. Journal of Glaciology 38(129): 223–232. DOI: 10.3198/1992JoG38-129-223-232Google Scholar
  55. Ohmura A, Kasser P, Funk M (1992) Climate at the equilibrium line of glaciers. Journal of Glaciology 38: 397–411. DOI: 10.3198/1992JoG38-130-397-411Google Scholar
  56. Peña H, Gutierrez R (1992) Statistical analysis of precipitation and air temperature in the Southern Patagonian Icefield. In: Glaciological Researches in Patagonia. Nagoya, Japanese Society of Snow and Ice, Data Center for Glacier Research, pp. 95–108.Google Scholar
  57. Porter S (1989) Some geological implications of average Quaternary glacial conditions. Quaternary Research 32(3): 245–261. DOI: 10.1016/0033-5894(89)90092-6CrossRefGoogle Scholar
  58. Putnam A, Schaefer J, Denton G, et al. (2012) Regional climate control of glaciers in New Zealand and Europe during the preindustrial Holocene. Nature Geosciences Letters 5: 627–630. DOI: 10.1038/ngeo1548CrossRefGoogle Scholar
  59. Rabassa J, Coronato A, Martínez O (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biological Journal of the Linnean Society 103(25): 316–335. DOI: 10.1111/j.1095-8312.2011.01681.xCrossRefGoogle Scholar
  60. Rabassa J, Coronato A (2009) Glaciations in Patagonia and Tierra del Fuego during the Ensenadan Stage/Age (Early Pleistocene–earliest Middle Pleistocene). Quaternary International 210(1–2): 18–36. DOI: 10.1016/j.quaint.2009.06.019CrossRefGoogle Scholar
  61. Rabassa J, Coronato A, Salemme M (2005) Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South American Earth Sciences 20(1–2): 81–103. DOI: 10.1016/j.jsames.2005.07.004CrossRefGoogle Scholar
  62. Ramos V, Ghiglione M (2008) Tectonic evolution of the Patagonian Andes. In: The Late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Amsterdam. pp 57–71.CrossRefGoogle Scholar
  63. Sagredo E, Moreno P, Villa-Martínez R, et al. (2011) Fluctuations of the Última Esperanza ice lobe (52°S), Chilean Patagonia, during the last glacial maximum and termination 1. Geomorphology 125: 92–108. DOI: 10.1016/j.geomorph.2010.09.007CrossRefGoogle Scholar
  64. Strelin J, Kaplan M, Vandergoes M, et al. (2014) Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 124: 715–145. DOI: 10.1016/j.quascirev.2014.06.026Google Scholar
  65. Strelin J, Denton G, Vandergoes M, et al. (2011) Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quaternary Science Reviews 30: 2551–2569. DOI: 10.1016/j.quascirev.2011.05.004CrossRefGoogle Scholar
  66. Strelin J, Malagnino E (2000) Late-Glacial History of Lago Argentino, Argentina, and Age of the Puerto Bandera Moraines. Quaternary Research 54(3): 339–347. DOI: 10.1006/qres.2000.2178CrossRefGoogle Scholar
  67. Sudgen D, Bentley M, Fogwill C, et al. (2005) Late-glacial glacier events in southernmost South America: A blend of “northern” and “southern” hemispheric climatic signals? Geografiska Annaler, Series A Physical Geography 87(2): 273–288.CrossRefGoogle Scholar
  68. Sugden D, John B (1976) Glaciers and Landscape. E. Arnold. London. p 376.Google Scholar
  69. Talma A, Vogel J (1993) Mathematics use for calibration scenario–A simplified approach to calibrating C14 dates. Radiocarbon 35(2): 317–322.CrossRefGoogle Scholar
  70. Turetsky M, Manning S, Wieder D (2012) Dating recent peats deposits. Wetlands 24(2): 324–356. DOI: 10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2CrossRefGoogle Scholar
  71. Vieira G (2008) Combined numerical and geomorphological reconstruction of the Serra da Estrela Plateau Icefield, Portugal. Geomorphology 97(1–2): 190–207. DOI: 10.1016/j.geomorph.2007.02.042CrossRefGoogle Scholar
  72. Villa-Martinez R, Moreno P (2007) Pollen evidence for variations in the southern margin of the Westerly Winds in SW Patagonia over the last 12,600 years. Quaternary Research 68: 400–409. DOI: 10.1016/j.yqres.2007.07.003CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • José Miguel Araos
    • 1
    • 2
  • Jacobus Philiphus Le Roux
    • 3
  • Néstor Mauricio Gutierrez
    • 1
  1. 1.Department of Geology, FCFMUniversidad de ChileSantiagoChile
  2. 2.Department of Geography, Faculty of Social SciencesUniversidad Alberto HurtadoSantiagoChile
  3. 3.Department of Geology, FCFMUniversidad de Chile, Andean Geothermal Centre of ExcellenceSantiagoChile

Personalised recommendations