Journal of Mountain Science

, Volume 14, Issue 3, pp 474–491 | Cite as

Quantification of 3D macropore networks in forest soils in Touzhai valley (Yunnan, China) using X-ray computed tomography and image analysis

  • Jia-ming Zhang
  • Ze-min Xu
  • Feng Li
  • Ru-ji Hou
  • Zhe Ren
Article
  • 107 Downloads

Abstract

The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA We took two large undisturbed soil columns (250 mm×250 mm×500 mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500 mm3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of macropores were root channels, inter-aggregate voids, macropores without knowing origin, root-soil interface and stone-soil interface. While macropore networks tend to be more complex, larger, deeper and longer. The forest soils have high macroporosity, total macropore wall area density, node density, and large macropore volume, hydraulic radius, mean macropore length, angle, and low tortuosity. The findings suggest that macropore networks in the forest soils have high inter-connectivity, vertical continuity, linearity and less vertically oriented.

Keywords

Slope stability Touzhai valley Rainfall infiltration Forest soils X-ray computed tomography 3D macropore networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Science Foundation of China-Yunnan Joint Fund (U1502232), the Natural Science Foundation of Yunnan Province (2014FD007), and the Natural Science Foundation of Kunming University of Science and Technology (KKSY201406009). Special thanks go to the students that helped with the field sampling. Dr. Guixiang Zhang from the Third People’s Hospital of Yunnan Province is warmly thanked for providing us with access to the medical scanner. I greatly appreciate the critical and constructive comments of the reviewers.

References

  1. Alaoui A, Helbling A (2006) Evaluation of soil compaction using hydrodynamic water content variation: comparison between compacted and noncompacted soil. Geoderma 134(1): 97–108. DOI: 10.1016/j.geoderma.2005.08.016CrossRefGoogle Scholar
  2. Allaire SE, Roulier S, Cessna AJ (2009) Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology 378(1): 179–204. DOI: 10.1016/j.jhydrol.2009.08.013CrossRefGoogle Scholar
  3. Anderson E, Weiler M, Alila Y, et al. (2009) Dye staining and excavation of a lateral preferential flow network. Hydrology and Earth System Sciences 13(6): 935–944. DOI: 10.5194/hess-13-935-2009CrossRefGoogle Scholar
  4. Aubertin GM (1971) Nature and extent of macropores in forest soils and their influence on subsurface water movement. Res. Pap. NE-192. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.Google Scholar
  5. Auclerc A, Capowiez Y, Guérold F, et al. (2013) Application of Xray tomography to evaluate liming impact on earthworm burrowing activity in an acidic forest soil under laboratory conditions. Geoderma 202: 45–50. DOI: 10.1016/j.geoderma. 2013.03.011CrossRefGoogle Scholar
  6. Auerswald K, Fiener P, Dikau R (2009) Rates of sheet and rill erosion in Germany — A meta-analysis. Geomorphology 111(3): 182–193. DOI: 10.1016/j.geomorph.2009.04.018CrossRefGoogle Scholar
  7. Bagarello V, Castellini M, Di Prima S, et al. (2014) Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 213: 492–501. DOI: 10.1016/j.geoderma.2013.08.032CrossRefGoogle Scholar
  8. Bastardie F, Capowiez Y, Cluzeau D (2005) 3D characterisation of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Applied Soil Ecology 30(1): 34–46. DOI: 10.1016/j.geoderma.2013.03.011CrossRefGoogle Scholar
  9. Beven K, Germann P (1982) Macropores and water flow in soils. Water resources research 18(5): 1311–1325. DOI: 10.1029/WR018i005p01311CrossRefGoogle Scholar
  10. Bodner G, Scholl P, Loiskandl W, et al. (2013) Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma 204: 120–129. DOI: 10.1016/j.geoderma.2013.04.015CrossRefGoogle Scholar
  11. Bogner C, Wolf B, Schlather M, et al. (2008) Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics. European Journal of Soil Science 59(1): 103–113. DOI: 10.1111/j.1365-2389.2007.00974.xCrossRefGoogle Scholar
  12. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. Journal of microscopy 224(3): 213–232. DOI: 10.1111/j.1365-2818.2006. 01706.xCrossRefGoogle Scholar
  13. Bottinelli N, Zhou H, Boivin P, et al. (2016) Macropores generated during shrinkage in two paddy soils using X-ray micro-computed tomography. Geoderma 265: 78–86. DOI: 10.1016/j.geoderma.2015.11.011CrossRefGoogle Scholar
  14. Buczko U, Bens O, Hüttl RF (2006) Tillage effects on hydraulic properties and macroporosity in silty and sandy soils. Soil Science Society of America Journal 70(6): 1998–2007. DOI: 10.2136/sssaj2006.0046CrossRefGoogle Scholar
  15. Capowiez Y, Pierret A, Daniel O, et al. (1998) 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores. Biology and Fertility of Soils 27(1): 51–59. DOI:10.1007/s003740050399CrossRefGoogle Scholar
  16. Capowiez Y, Sammartino S, Michel E (2011) Using X-ray tomography to quantify earthworm bioturbation nondestructively in repacked soil cores. Geoderma 162(1): 124–131. DOI:10.1016/j.geoderma.2011.01.011CrossRefGoogle Scholar
  17. Cerdà A (2001) Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science 52(1): 59–68. DOI: 10.1046/j.1365-2389.2001.00354.xCrossRefGoogle Scholar
  18. Cerdan O, Govers G, Le Bissonnais Y, et al. (2010) Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122(1): 167–177. DOI: 10.1016/j.geomorph. 2010.06.011CrossRefGoogle Scholar
  19. Certini G, Campbell CD, Edwards AC (2004) Rock fragments in soil support a different microbial community from the fine earth. Soil Biology and Biochemistry 36(7): 1119–1128. DOI: 10.1016/j.soilbio.2004.02.022CrossRefGoogle Scholar
  20. Chen ZS, Kong JM (1991) A catastrophic landslide of sept.23, 1991 at Touzhaigou of Zhaotong, Yunan province. Mountain Research 9(4): 265–268.DOI: 10.16089/j.cnki.1008-2786.1991.04.013 (In Chinese)Google Scholar
  21. Doube M, Kłosowski MM, Arganda-Carreras I, et al. (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6): 1076–1079. DOI: 10.1016/j.bone.2010.08.023CrossRefGoogle Scholar
  22. Feyen J, Jacques D, Timmerman A, et al. (1998) Modelling water flow and solute transport in heterogeneous soils: A review of recent approaches. Journal of Agricultural Engineering Research 70(3): 231–256. DOI: 10.1006/jaer.1998.0272CrossRefGoogle Scholar
  23. Hanson DL, Steenhuis TS, Walter MF, et al. (2004) Effects of soils degradation and management practices on the surface water dynamics in the talgua river watershed in Honduras. Land Degradation & Development 15: 367–381. DOI: 10.1002/ldr.603CrossRefGoogle Scholar
  24. Holden J (2009) Flow through macropores of different size classes in blanket peat. Journal of Hydrology 364(3): 342–348. DOI:10.1016/j.jhydrol.2008.11.010CrossRefGoogle Scholar
  25. Hu X, Li ZC, Li XY, et al. (2015) Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China. Soil and Tillage Research 150: 1–9. DOI:10.1016/j.still.2014.12.019CrossRefGoogle Scholar
  26. Hu X, Li ZC, Li XY, et al. (2016) Quantification of soil macropores under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai–Tibet Plateau. Geoderma 264: 244–251. DOI:10.1016/j.geoderma.2015.11.001CrossRefGoogle Scholar
  27. Huo RJ (2015) The study of macropore and permeability of wall vegetated slope soils based on CT scans. Master Thesis, Kunming University of Science and Technology, Kunming, Yunnan. p 26. (In Chinese)Google Scholar
  28. Jackson RB, Canadell J, Ehlerlinger JR, et al. (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108(3): 389–411. DOI: 10.1007/BF00333714CrossRefGoogle Scholar
  29. Jégou D, Capowiez Y, Cluzeau D (2001) Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems. Geoderma 102(1): 123–137. DOI: 10.1016/S0016-7061(00)00107-5CrossRefGoogle Scholar
  30. Jirků V, Kodešová R, Nikodem A, et al. (2013) Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 204: 43–58. DOI: 10.1016/j.geoderma.2013.03.024CrossRefGoogle Scholar
  31. Katuwal S, Norgaard T, Moldrup P, et al. (2015) Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma 237: 9–20. DOI: 10.1016/j.geoderma.2014.08.006CrossRefGoogle Scholar
  32. Laine-Kaulio H, Backnäs S, Koivusalo H, et al. (2015) Dye tracer visualization of flow patterns and pathways in glacial sandy till at a boreal forest hillslope. Geoderma 259: 23–34. DOI:10.1016/j.geoderma.2015.05.004CrossRefGoogle Scholar
  33. Lamandé M, Labouriau R, Holmstrup M, et al. (2011) Density of macropores as related to soil and earthworm community parameters in cultivated grasslands. Geoderma 162(3): 319–326. DOI: 10.1016/j.geoderma.2011.03.004CrossRefGoogle Scholar
  34. Langmaack M, Schrader S, Rapp-Bernhardt U, et al. (1999). Quantitative analysis of earthworm burrow systems with respect to biological soil-structure regeneration after soil compaction. Biology and Fertility of Soils 28(3): 219–229. DOI: 10.1007/s003740050486CrossRefGoogle Scholar
  35. Lee CA, Lauenroth WK (1994) Spatial distributions of grass and shrub root systems in the shortgrass steppe. American Midland Naturalist 132(1): 117–123. DOI: 10.2307/2426206CrossRefGoogle Scholar
  36. Lee TC, Kashyap RL, Chu CN (1994) Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graphical Models and Image Processing 56(6): 462–478. DOI:10.1006/cgip.1994.1042Google Scholar
  37. Legout A, Legout C, Nys C, et al. (2009) Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France). Geoderma 151(3): 179–190. DOI:10.1016/j.geoderma.2009.04.002CrossRefGoogle Scholar
  38. Lin HS, McInnes KJ, Wilding LP, et al. (1996) Effective porosity and flow rate with infiltration at low tensions in a wellstructured subsoil. Transactions of the ASAE 39(1): 131–135. DOI: 10.13031/2013.27490CrossRefGoogle Scholar
  39. Lu B, Zhang SL, Li K, et al. (2014) Distribution of soil macropores and their influence on saturated hydraulic conductivity in the Huoditang region of the Qinling Mountains. Aata Ecological Sinica 34(6): 1512–1519. DOI: 10.5846/stxb201210281493 (In Chinese)Google Scholar
  40. Luo LF, Lin H, Li SC (2010) Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. Journal of Hydrology 393(1): 53–64. DOI:10.1016/j.jhydrol.2010.03.031CrossRefGoogle Scholar
  41. Luo RY (1983) Forest soils (questions and methods). Beijing: Science Press. p 369. (In Chinese)Google Scholar
  42. Luxmoore RJ, Jardine PM, Wilson GV, et al. (1990) Physical and chemical controls of preferred path flow through a forested hillslope. Geoderma 46: 139–154. DOI: 10.1016/0016-7061(90)90012-XCrossRefGoogle Scholar
  43. Martínez FSJ, Martín MA, Caniego FJ, et al. (2010) Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures. Geoderma 156(1): 32–42. DOI:10.1016/j.geoderma.2010.01.004CrossRefGoogle Scholar
  44. Marzen M, Iserloh T, Casper M C, et al. (2015) Quantification of particle detachment by rain splash and wind-driven rain splash. Catena 127: 135–141. DOI: 10.1016/j.catena.2014.12.023CrossRefGoogle Scholar
  45. Messing I, Alrikkson A, Johansson W (1997) Soil physical properties of afforested and arable land. Soil Use and Management 13: 209–217. DOI: 10.1111/j.1475-2743.1997.tb00588.xCrossRefGoogle Scholar
  46. Mooney SJ (2002) Three-dimensional visualization and quantification of soil macroporosity and water flow patterns using computed tomography. Soil Use and Management 18(2): 142–151. DOI: 10.1111/j.1475-2743.2002.tb00232.xCrossRefGoogle Scholar
  47. Mooney SJ, Morris C (2008) A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography. Catena 73(2): 204–211. DOI: 10.1016/j.catena.2007.09.003CrossRefGoogle Scholar
  48. Nanjing Hydraulic Research Institute (1999) Specification of soil test. Beijing: China Water & Power Press. p 556. (In Chinese)Google Scholar
  49. Nobles MM, Wilding LP, Lin HS (2010) Flow pathways of bromide and Brilliant Blue FCF tracers in caliche soils. Journal of Hydrology 393(1): 114–122. DOI:10.1016/j.jhydrol. 2010.03.014CrossRefGoogle Scholar
  50. Noguchi S, Tsuboyama Y, Sidle RC, et al. (1997) Spatially distributed morphological characteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed, Japan. Journal of Forest Research 2(4): 207–215. DOI: 10.1007/BF02348317CrossRefGoogle Scholar
  51. Norgaard T, Moldrup P, Olsen P, et al. (2013) Comparative mapping of soil physical–chemical and structural parameters at field scale to identify zones of enhanced leaching risk. Journal of Environmental Quality 42(1): 271–283. DOI: 10.2134/jeq2012. 0105CrossRefGoogle Scholar
  52. Pagenkemper SK, Athmann M, Uteau D, et al. (2015) The effect of earthworm activity on soil bioporosity–Investigated with X-ray computed tomography and endoscopy. Soil and Tillage Research 146: 79–88. DOI: 10.1016/j.still.2014.05.007CrossRefGoogle Scholar
  53. Perret J, Prasher SO, Kantzas A, et al. (1999) Three-dimensional quantification of macropore networks in undisturbed soil cores. Soil Science Society of America Journal 63(6): 1530–1543. DOI:10.2136/sssaj1999.6361530xCrossRefGoogle Scholar
  54. Pierret A, Capowiez Y, Belzunces L, et al. (2002) 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106(3): 247–271. DOI: 10.1016/S0016-7061(01)00127-6CrossRefGoogle Scholar
  55. Price K, Jackson CR, Parker AJ (2010) Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology 383(3): 256–268. DOI: 10.1016/j.jhydrol.2009.12.041CrossRefGoogle Scholar
  56. Prosdocimi M, Cerdà A, Tarolli P (2016) Soil water erosion on Mediterranean vineyards: A review. Catena 141: 1–21. DOI: 10.1016/j.catena.2016.02.010CrossRefGoogle Scholar
  57. Ren BZ (2014) The formation mechanism of clay minerals in residual soil of emeishan basalt slope. Master Thesis, Kunming University of Science and Technology, Kunming, Yunnan. p24, 32. (In Chinese)Google Scholar
  58. Rodrigo Comino J, Brings C, Lassu T, et al. (2015) Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6(3): 823–837. DOI: 10.5194/se-6-823-2015CrossRefGoogle Scholar
  59. Rodrigo Comino J, Sinoga JDR, González JMS, et al. (2016a) High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena 145: 274–284. DOI: 10.1016/j.catena.2016.06.012CrossRefGoogle Scholar
  60. Rodrigo Comino J, Iserloh T, Lassu T, et al. (2016b) Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of The Total Environment 565: 1165–1174. DOI: 10.1016/j.scitotenv. 2016.05.163CrossRefGoogle Scholar
  61. Rogasik H, Schrader S, Onasch I, et al. (2014) Micro-scale dry bulk density variation around earthworm (Lumbricus terrestris L.) burrows based on X-ray computed tomography. Geoderma 213: 471–477. DOI: 10.1016/j.geoderma.2013.08.034CrossRefGoogle Scholar
  62. Schlather M, Huwe B (2005). A risk index for characterising flow pattern in soils using dye tracer distributions. Journal of contaminant hydrology 79(1): 25–44. DOI: 10.1016/j.jconhyd. 2005.05.005CrossRefGoogle Scholar
  63. Schmid B, Schindelin J, Cardona A, et al. (2010) A high-level 3D visualization API for Java and ImageJ. BioMed Central bioinformatics 11(1): 1–7. DOI: 10.1186/1471-2105-11-274Google Scholar
  64. Schrader S, Rogasik H, Onasch I, et al. (2007) Assessment of soil structural differentiation around earthworm burrows by means of X-ray computed tomography and scanning electron microscopy. Geoderma 137(3): 378–387. DOI: 10.1016/j.geoderma.2006.08.030CrossRefGoogle Scholar
  65. Sheng F, Zhang LY, Wu D (2016) Review on research theories and observation techniques for preferential flow in unsaturated soil. Transactions of the Chinese Society of Agricultural Engineering 32(6): 1–10. DOI: 10.11975/j.issn.1002-6819.2016.06.001 (In Chinese)Google Scholar
  66. Sidle RC, Noguchi S, Tsuboyama Y, et al. (2001) A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrological Processes 15(10): 1675–1692. DOI: 10.1002/hyp.233CrossRefGoogle Scholar
  67. Sohrt J, Ries F, Sauter M, et al. (2014) Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena 123: 1–10. DOI: 10.1016/j.catena.2014.07.003CrossRefGoogle Scholar
  68. Uchida T, Kosugi K, Mizuyama T (2001) Effects of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments. Hydrological Processes 15(11): 2151–2174. DOI: 10.1002/hyp.281CrossRefGoogle Scholar
  69. Van Schaik N, Schnabel S, Jetten VG (2008) The influence of preferential flow on hillslope hydrology in a semi-arid watershed (in the Spanish Dehesas). Hydrological processes 22(18): 3844–3855. DOI:10.1002/hyp.6998CrossRefGoogle Scholar
  70. Watson KW, Luxmoore RJ (1986) Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal 50(3): 578–582. DOI: 10.2136/sssaj1986.03615995005000030007xCrossRefGoogle Scholar
  71. Wiekenkamp I, Huisman JA, Bogena HR, et al. (2016) Spatial and temporal occurrence of preferential flow in a forested headwater catchment. Journal of Hydrology 534: 139–149. DOI: 10.1016/j.jhydrol.2015.12.050CrossRefGoogle Scholar
  72. Zhang C, Chen Y, Zhang YF, et al. (2016) Geohazard susceptibility evaluation in Zhaotong of Yunnan based on the multivatiate linear regression model. Hydrogeology andEngineering Geology 43(3): 159–163. DOI: 10.16030/j.cnki.issn.1000-3665.2016.03.25 (In Chinese)Google Scholar
  73. Zhang JM, Xu ZM, Pei YG (2012) Macropores in vadose zone of well vegetated slopes. Mountain Research 30(4): 439–449. DOI: 10.16089/j.cnki.1008-2786.2012.04.019 (In Chinese)Google Scholar
  74. Zhang JM, Xu ZM (2013) A dye tracer experiment to study macropore flow paths in unsaturated zone under different vegetated communities in Maka Mountian, China. Journal of Jilin University (Earth Science Edition) 43(6): 1922–1935. DOI: 10.13278/j.cnki.jjuese.2013.06.028 (In Chinese)Google Scholar
  75. Zhang JM, Xu ZM (2016) Dye tracer infiltration technique to investigate macropore flow paths in Maka Mountain, Yunnan Province. Journal of Central South University 23(8): 2101–2109. DOI: 10.1007/s11771-016-3266-yCrossRefGoogle Scholar
  76. Zhang YH, Niu JZ, Zhang MX, et al. (2016) Interaction Between Plant Roots and Soil Water Flow in Response to Preferential Flow Paths in Northern China. Land Degradation & Development. DOI: 10.1002/ldr.2592Google Scholar
  77. Zhao CH, Gao JE, Huang YF, et al. (2016) Effects of vegetation stems on hydraulics of overland flow under varying water discharges. Land Degradation & Development 27: 748–757. DOI: 10.1002/ldr.2423CrossRefGoogle Scholar
  78. Zhou BB, Shao MN, Shao HB (2009) Effects of rock fragments on water movement and solute transport in a Loess Plateau soil. Comptes Rendus Geoscience 341(6): 462–472. DOI: 10.1016/j.crte.2009.03.009CrossRefGoogle Scholar
  79. Zhou X, Lin HS, White EA (2008) Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. Catena 73(2): 180–188. DOI:10.1016/j.catena.2007.09.009CrossRefGoogle Scholar
  80. Zhou Y, Zhang J, Luo HS, et al. (2001) Tensile strength in lateral roots of Pinus and Cyclobalanopsis and its significance in maintaining slope stability in a shelter-forest system. Acta Phytoecological Sinica 25(1): 105–109 (In Chinese)Google Scholar
  81. Xu ZM, Huang RQ, Tang ZG (2007) Engineering geological characteristics of the Touzhai landslide and its occurrence mechanisms. Geological Review 53(5): 691–698. DOI: 10.16509/j.georeview.2007.05.019 (In Chinese)Google Scholar
  82. Xu ZM, Huang RQ (2011). The response of the groundwater in vegetated slopes in mountainous catchments to heavy rain events. Advances in Earth Science 26(6): 598–607 (In Chinese)Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jia-ming Zhang
    • 1
  • Ze-min Xu
    • 1
  • Feng Li
    • 2
  • Ru-ji Hou
    • 3
  • Zhe Ren
    • 1
  1. 1.Department of Civil EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Department of Earth SciencesKunming University of Science and TechnologyKunmingChina
  3. 3.Water Transportation Planning and Design Institute of YunnanKunmingChina

Personalised recommendations