Journal of Mountain Science

, Volume 14, Issue 4, pp 621–635 | Cite as

On the criteria to create a susceptibility map to debris flow at a regional scale using Flow-R

  • Roberta Pastorello
  • Tamara Michelini
  • Vincenzo D’Agostino
Article

Abstract

Studies on susceptibility to debris flows at regional scale (100-1000 km2) are important for the protection and management of mountain areas. To reach this objective, routing models, mainly based on land topography, can be used to predict susceptible areas rapidly while necessitating few input data. In this research, Flow-R model is implemented to create the susceptibility map for the debris flow of the Vizze Valley (BZ, North-Eastern Italy; 134 km2). The analysis considers the model application at local scale for three sub-catchments and then it explores the model upscaling at the regional scale by verifying two methods to generate the source areas of debris-flow initiation. Using data of an extreme event occurred in the Vizze Valley (4 August 2012) and historical information, the modeling verification highlights that the propagation parameters are relatively simple to set in order to obtain correct runout distances. A double DTM filtering - using a threshold for the upslope contributing area (0.1 km2) and a threshold for the terrain-slope angle (15°) - provides a satisfactory prediction of source areas and susceptibility map within the geological conditions of the Vizze Valley.

Keywords

Debris flow Susceptibility map Flow-R Triggering areas Regional scale Alpine valley 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astori A, Venturini C (2011) Evoluzione quaternaria della media Val di Vizze -Pfitschtal (Vipiteno, BZ -Alpi Aurine). Gortania Geologia Paleontologia Paletnologia 33 (1): 63–92 (Quaternary evolution of the middle Val di Vizze -Pfitschtal). (In Italian)Google Scholar
  2. Bathurst JC, Burton A, Ward TJ (1997) Debris Flow Run-Out and Landslide Sediment Delivery Model Tests. Journal of Hydraulic Engineering 123 (5): 410–419. DOI: 10.1061/(ASCE)0733-9429(1997)123:5(410)CrossRefGoogle Scholar
  3. Baumann V, Wick E, Horton P, et al. (2011) Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In: Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. 2-6 October 2011 Toronto, Ontario, Canada.Google Scholar
  4. Bettella F, Bertoldi G, Ferrato C, et al. (2012) Modellazioni bidimensionali comparate sulla propagazione di debris flow: analisi di performance su alcuni eventi reali. Quaderni di idronomia montana 30: 437–447 (Comparative 2D debrisflow modeling: performance analysis on real events). (In Italian)Google Scholar
  5. Blahut J, Horton P, Sterlacchini S, et al. (2010) Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Natural Hazards and Earth System Sciences 10 (11): 2379–2390. DOI: 10.5194/nhess-10-2379-2010CrossRefGoogle Scholar
  6. Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94 (3): 353–378. DOI: 10.1016/j.geomorph. 2006.10.033CrossRefGoogle Scholar
  7. Cavalli M, Grisotto S (2006) Individuazione con metodi GIS delle aste torrentizie soggette a colate detritiche: applicazione al bacino dell’Alto Avisio (Trento). Quaderni di idronomia montana 26: 1–12 (Gis-based identification of debris flow dominated channels: application to the upper Avisio basin (Trento)). (In Italian)Google Scholar
  8. Claessens L, Heuvelink GBM, Schoorl JM, et al. (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms 30 (4): 461–477. DOI: 10.1002/esp.1155CrossRefGoogle Scholar
  9. Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Sciences 3 (1/2): 81–93. DOI: 10.5194/nhess-3-81-2003CrossRefGoogle Scholar
  10. D’Agostino V (2013) Assessment of Past Torrential Events Through Historical Sources. In: Schneuwly-Bollschweiler, M, Stoffel M, Rudolf-Miklow F (eds.), Dating Torrential Processes on Fans and Cones in Advances on Global Change Research 47: 131–146. DOI: 10.1007/978-94-007-4336-6CrossRefGoogle Scholar
  11. Dowling CA, Santi PM (2014) Debris flow and their toll of human life: a global analysis of debris flow fatalities from 1950 to 2011. Natural Hazards 71 (1): 203. DOI: 10.1007/s11069-013-0907-4CrossRefGoogle Scholar
  12. Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Canadian Geotechnical. Journal 38 (5): 982–994. DOI: 10.1139/cgj-38-5-982CrossRefGoogle Scholar
  13. Fischer L, Rubensdotter L, Sletten K, et al. (2012) Debris flow modeling for susceptibility mapping at regional to national scale in Norway. In: Eberhardt et al. (eds.), Landslides and Engineered Slopes: Protecting Society through Improved Understanding. Taylor & Francis Group, London, UK, pp. 723–729.Google Scholar
  14. Fuchs S, Kaitna R, Scheidl C, et al. (2008) The Application of the Risk Concept to Debris Flow Hazards. Geomechanics and Tunnelling 1 (2): 120–129. DOI: 10.1002/geot.200800013CrossRefGoogle Scholar
  15. Gamma P (2000) Dfwalk -Ein Murgang Simulationsprogramm zur Gefahrenzonierung, Rapport final. Geographisches Institut der Universitat, Bern, Switzerland. pp 158 (A debris flow simulation program for hazard zonation). (In German)Google Scholar
  16. Ghilardi P, Natale L, Savi F (2001) Modelling Debris Flow Propagation and Deposition. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science 26 (9): 651–656. DOI: 10.1016/S1464-1917(01)00063-0Google Scholar
  17. Heim A (1932) Bergsturz und Menschenleben. Vierteljhareszeitschrift der Naturforschenden Gesellschaft, Zurich, Switzerland (Rockfall and human life). (In German)Google Scholar
  18. Heinimann H (1998) Methoden zur Analyse und Bewertung von Naturgefahren. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Vol. 85, Bern, Switzerland, pp. 247 (Methods for the analysis and assessment of natural hazards). (In German)Google Scholar
  19. Holmgren P (1994) Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes 8 (4): 327–334. DOI: 10.1002/hyp.3360080405CrossRefGoogle Scholar
  20. Horton P, Jaboyedoff M, Bardou E (2008) Debris flow susceptibility mapping at a regional scale. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds.), 4th Canadian Conference on Geohazards: From Causes to Management. Presse de l’Université Laval, Québec, Canada, pp 399–406.Google Scholar
  21. Horton P, Jaboyedoff M, Rudaz B, et,al. (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences 13 (4): 869–885. DOI: 10.5194/nhess-13-869-2013CrossRefGoogle Scholar
  22. Horton P, Jaboyedoff M, Zimmermann M, et al. (2011) Flow-R, a model for debris flow susceptibility mapping at a regional scale -some case studies. In: Casa Editrice Università La Sapienza (eds.), Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment -Italian Journal of Engineering Geology and Environment. Padova, Italy, pp. 875–884. DOI: 10.4408/IJEGE.2011-03.B-095Google Scholar
  23. Huggel C, Kaab A, Haeberli W, et al. (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal 39 (2): 316–330. DOI: 10.1139/t01-099CrossRefGoogle Scholar
  24. Hungr O, Leroueil S, Picarelli L (2013) The Varnes classification of landslide types, an update. Landslides 11 (2): 167–194. DOI: 10.1007/s10346-013-0436-yCrossRefGoogle Scholar
  25. Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology 78 (3): 359–372. DOI:10.1016/j.geomorph. 2006.02.003CrossRefGoogle Scholar
  26. Iverson RM, Denlinger RP (2001) Mechanics of debris flows and debris-laden flash floods. In: USGS Research (eds.), Seventh Federal Interagency Sedimentation Conference. 25-29 March 2001, Reno, Nevada, USA, pp. 1–8Google Scholar
  27. Kappes MS, Malet JP, Remaître A, et al. (2011) Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Sciences 11 (2): 627–641. DOI: 10.5194/nhess-11-627-2011CrossRefGoogle Scholar
  28. Lari S, Crosta GB, Frattini P, et al. (2011) Regional-scale debris flow risk assessment for an alpine valley. In: Casa Editrice Università La Sapienza (eds.), Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment -Italian Journal of Engineering Geology and Environment. Padova, Italy, pp. 933–940. DOI: 10.4408/IJEGE.2011-03.B-101Google Scholar
  29. Macconi P, Formaggioni O, Sperling M (2012) Report Annuale ED30 2012. Bolzano, Italy. (Annual Report of ED30). (In Italian)Google Scholar
  30. Michelini T, Pastorello R, D’Agostino V (2014) Modellazione morfo-energetica delle colate detritiche per la definizione della suscettibilità al pericolo. In: Zaccaria Editore (eds.) XXXIV Convegno Di Idraulica E Costruzioni Idrauliche. Vol. 2: 8-10, pp. 701–702 (Morpho-energetic simulation of debris flows for the definition of hazard susceptibility). (In Italian)Google Scholar
  31. Michelini T, D’Agostino V (2015) Confronto tra un modello semi-empirico e un modello fisicamente basato per la simulazione delle aree colpite da colate detritiche. Quaderni di idronomia Montana 32/1: 287–296 (Comparison between a semi-empiric model and a physical model for the identification of areas affected by debris flows). (In Italian)Google Scholar
  32. Michoud C, Derron MH, Horton P, et al. (2012) Rockfall hazard and risk assessments along roads at a regional scale: Example in Swiss Alps. Natural Hazards and Earth System Sciences 12 (3): 615–629. DOI:10.5194/nhess-12-615-2012CrossRefGoogle Scholar
  33. Miller DJ, Burnett KM (2008) A probabilistic model of debrisflow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA. Geomorphology 94 (1): 184–205. DOI: 10.1016/j.geomorph.2007.05.009CrossRefGoogle Scholar
  34. Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research 30 (4): 1153–1171. DOI: 10.1029/93WR 02979CrossRefGoogle Scholar
  35. Montgomery DR, Foufoula-Georgiou E (1993) Channel network source representation using digital elevation models. Water Resouces Research 39 (12): 3925–3934. DOI: 10.1029/93WR 02463CrossRefGoogle Scholar
  36. O’Brien JS, Julien PY, Fullerton WT (1993) Two-Dimensional water flood and mudflow simulation. Journal of Hydraulic. Engineering 119 (2): 244–261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)CrossRefGoogle Scholar
  37. O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 27 (3): 247. DOI: 10.1016/S0734-189X(84)80047-XCrossRefGoogle Scholar
  38. Park D, Lee S, Nikhil NV, et al. (2013) Debris flow hazard zonation by probabilistic analysis (Mt. Woomyeon, Seoul, Korea). International Journal of Innovative Research in Science, Engineering and Technology 2 (6): 2381–2390.Google Scholar
  39. Perla R, Cheng TT, McClung DM (1980) A two-parameter model of snow-avalanche motion. Journal of Glaciology 26 (94): 197–207. DOI: 10.1017/S002214300001073XCrossRefGoogle Scholar
  40. Quinn P, Beven K, Chevallier P (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5 (1): 59–79. DOI: 10.1002/hyp.3360050106CrossRefGoogle Scholar
  41. Rickenmann D (1999) Empirical Relationships for Debris Flows. Natural hazards 19 (9): 47–77. DOI: 10.1023/A:10080642 20727CrossRefGoogle Scholar
  42. Rickenmann D, Laigle D, McArdell BW, et al. (2006) Comparison of 2D debris-flow simulation models with field events. Computational Geosciences 10 (2): 241–264. DOI: 10.1007/s10596-005-9021-3CrossRefGoogle Scholar
  43. Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8 (2): 175–189. DOI: 10.1016/0169-555X(93)90036-2CrossRefGoogle Scholar
  44. Santos R, Menéndez Duarte R (2006) Topographic signature of debris flow dominated channels: implications for hazard assessment. WIT Transactions on Ecology and the Environment 90: 301–310. DOI: 10.2495/DEB060291CrossRefGoogle Scholar
  45. Scheidl C, Rickenmann D (2010) Empirical prediction of debrisflow mobility and deposition on fans. Earth Surface Processes and Landforms 35 (2): 157–173. DOI: 10.1002/esp.1897Google Scholar
  46. Suk P, Klimánek M (2011) Creation of the snow avalanche susceptibility map of the Krkonoše mountains using GIS. Acta Universitatis Agricolturae et. Silvicolturae Mendelianae Brunensis 59 (5): 237–246. DOI: 10.11118/actaun2011 59050237CrossRefGoogle Scholar
  47. Takahashi T (1981) Estimation of potential debris flows and their hazardous zones; soft countermeasures for a disaster. Journal of Natural Disaster Science 3 (1): 57–89Google Scholar
  48. Takahashi T (2007) Debris flow Mechanics, Prediction and Countermeasures. Taylor & Francis/Balkema, Leiden, Netherlands, pp 447.CrossRefGoogle Scholar
  49. Vanzetta A (1987) Relazione tecnica riguardante i lavori di sistemazione idraulico-forestale da eseguirsi nei rivi Riva e Avenes, affluenti del torrente Vizze in comune di Prati di Vizze. Bolzano, Italy (Technical report on the hydraulic control structures built on Rio Riva and Rio Avenes(BZ)). (In Italian)Google Scholar
  50. Zimmermann M, Mani P, (1997) Murganggefahr und Klimaänderung -ein GIS-basierter Ansatz. Schlussbericht Hochschulverlag and der ETH, Zurich, Switzerland (Debris flow Hazard and Climate Change -a GIS-based approach). (In German)Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Roberta Pastorello
    • 1
  • Tamara Michelini
    • 1
  • Vincenzo D’Agostino
    • 1
  1. 1.Department of Land, EnvironmentAgriculture and Forestry (TeSAF), University of PadovaLegnaroItaly

Personalised recommendations