Journal of Mountain Science

, Volume 13, Issue 8, pp 1358–1374 | Cite as

Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970-2014

  • Kun-peng Wu
  • Shi-yin LiuEmail author
  • Wan-qin Guo
  • Jun-feng Wei
  • Jun-li Xu
  • Wei-jia Bao
  • Xiao-jun Yao


Glaciers in the western Nyainqentanglha Range are an important source of water for social and economic development. Changes in their area were derived from two Chinese glacier inventories; one from the 1970 1:50,000 scale Chinese Topographic Maps series and the other from Landsat TM/ETM+ images acquired in 2009. Analyses also included boundaries from 2000 and 2014 Landsat TM/ETM+ images. A continuing and accelerating shrinkage of glaciers occurred here from 1970 to 2014, with glacier area decreasing by 244.38 ± 29.48 km2 (27.4% ± 3.3%) or 0.62% ± 0.08% a–1. While this is consistent with a changing climate, local topographic parameters, such as altitude, slope, aspect and debris cover, are also important influences. Recession is manifested by a rise in the elevation of the glacier terminus. The shrinkage of glaciers with NE, N and NW orientations exceeded that of other aspects, and glaciers with SE and S orientations experienced less shrinkage. Changes in the average positive difference of glaciation (PDG) show that the western Nyainqentanglha Range has unfavorable conditions for glacier maintenance which is being exacerbated by a warming climate since 1970.


Glacier change Glacier inventory Western Nyainqentanglha Range Remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ageta Y, Fujita K (1996) Characteristics of mass balance of summer-accumulation type glaciers in the Himalayas and Tibetan Plateau. Zeitschrift für Gletscherkunde und Glazialgeologie 32(1-2): 61–65.Google Scholar
  2. Arefi H, Reinartz P (2011) Accuracy enhancement of ASTER global digital elevation models using ICESat data. Remote Sensing 3(7): 1323–1343. DOI: 10.3390/rs3071323CrossRefGoogle Scholar
  3. Arendt A, Bliss A, Bolch T, et al. (2015) Randolph glacier inventory-a dataset of global glacier outlines. Version 5.0. edition, University of Colorado, National Snow and Ice Data Center (NSIDC), Global Land Ice Measurements from Space (GLIMS), Boulder, CO, USA. Available online at: (Accessed on 11 November 2015)Google Scholar
  4. Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change 59(1-4): 138–148. DOI: 10.1016/j. gloplacha.2006.11.031CrossRefGoogle Scholar
  5. Benn DI, Bolch T, Hands K, et al. (2012) Response of debriscovered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews 114(1-2): 156–174. DOI: 10.1016/j.earscirev. 2012.03.008CrossRefGoogle Scholar
  6. Berry PAM, Garlick JD, Smith RG (2007) Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sensing of Environment 106(1): 17–27. DOI: 10.1016/j.rse. 2006.07.011CrossRefGoogle Scholar
  7. Bhambri R, Bolch T, Chaujar RK, et al. (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology 57(203): 543–556. DOI: 10.3189/002214311796905604CrossRefGoogle Scholar
  8. Böhner J (2006) General climatic controls and topoclimatic variations of Central and High Asia. Boreas 35(2): 279–295. DOI: 10.1111/j.1502-3885.2006.tb01158.xCrossRefGoogle Scholar
  9. Bolch T, Menounos B, Wheate R (2010a) Landsat-based inventory of glaciers in western Canada, 1985-2005. Remote Sensing of Environment 114(1): 127–137. DOI: 10.1016/j.rse.2009.08.015CrossRefGoogle Scholar
  10. Bolch T, Yao T, Kang S, et al. (2010b) A glacier inventory for the western Nyainqentanglha Range and Nam Co Basin, Tibet, and glacier changes 1976-2009. The Cryosphere 4(3): 419–433. DOI: 10.5194/tc-4-419-2010CrossRefGoogle Scholar
  11. Brahmbhatt RM, Bahuguna I, Rathore BP, et al. (2012) Variation of snowline and mass balance of glaciers of Warwan and Bhut basins of western Himalaya using remote sensing technique. Journal of the Indian Society of Remote Sensing 40(4): 629–637. DOI: 10.1007/s12524-011-0186-zCrossRefGoogle Scholar
  12. Braithwaite RJ, Raper SCB (2009) Estimating equilbrium line altitude (ELA) from glacier inventory data. Annals of Glaciology 50(53): 127–132. DOI: 10.3189/172756410790595 930CrossRefGoogle Scholar
  13. Caidong C, Sorteberg A (2010) Modelled mass balance of the Xibu glacier, Tibetan Plateau: sensitivity to climatic change. Journal of Glaciology 56(196): 235–248. DOI: 10.3189/00221 4310791968467CrossRefGoogle Scholar
  14. Chen F, Kang SC, Zhang YJ, et al. (2009) Glaciers and lake change in response to climate change in the Nam Co Basin, Tibet. Journal of Mountain Science 18(6): 641–647. (In Chinese)Google Scholar
  15. Cogley JG (2009) A more complete version of the world glacier inventory. Annals of Glaciology 50(53): 32–38. DOI: 10.3189/172756410790595859CrossRefGoogle Scholar
  16. Falorni G, Teles V, Vivoni ER, et al. (2005) Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. Journal of Geophysical Research 110(F2): F02005. DOI: 10.1029/2003JF000113CrossRefGoogle Scholar
  17. Frauenfelder R, Kääb A (2009) Glacier mapping from multitemporal optical remote sensing data within the Brahmaputra river basin. 33rd International Symposium on Remote Sensing of Environment: Sustaining the Millenium Development Goals, 4-8 May 2009, Stresa, Italy. International Center for Remote Sensing of Environment, Tucson, AZ, 2009, digital media: Paper 299. Available online at: (Accessed on 4 February 2015)Google Scholar
  18. Frey H, Paul F (2012) On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. International Journal of Applied Earth Observation and Geoinformation 18: 480–490. DOI: 10.1016/j.jag.2011.09.020CrossRefGoogle Scholar
  19. Gardner AS, Moholdt G, Cogley JG, et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134): 852–857. DOI: 10.1126/science. 1234532CrossRefGoogle Scholar
  20. Guo WQ, Liu SY, Yu PC, et al. (2011) Automatic extraction of ridgelines using on drainage boundaries and aspect difference. Science of Surveying and Mapping 36(6): 210–213. (In Chinese)Google Scholar
  21. Guo WQ, Liu SY, Wei JF, et al. (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology 54(63): 299–310. DOI: 10.3189/2013AoG63A495CrossRefGoogle Scholar
  22. Guo WQ, Liu SY, Xu JL, et al. (2015) The second Chinese glacier inventory: data, methods, and results. Journal of Glaciology 61(226): 357–372. DOI: 10.3189/2015JoG14J209CrossRefGoogle Scholar
  23. Han HD, Wang J, Wei JF, et al. (2010) Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. Journal of Glaciology 56(196): 287–296. DOI: 10.3189/002214310791968430CrossRefGoogle Scholar
  24. Immerzeel W W, van Beek L P H, Bierkens M F P (2010) Climate change will affect the Asian water towers. Science 328(5984): 1382–1385. DOI: 10.1126/science.1183188CrossRefGoogle Scholar
  25. IPCC (2013) Summary for policymakers. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, et al. (eds.) Cambridge University Press Cambridge, UK and New York, NY, USA. pp 1–30. DOI: 10.1017/CBO9781107415324.004Google Scholar
  26. Kang SC, Chen F, Ye QH, et al. (2007a) Glacier retreating dramatically on the Mt. Nyainqêntanglha during the last 40 years. Journal of Glaciology and Geocryology 29(6): 869–873. (In Chinese)Google Scholar
  27. Kang SC, Qin DH, Ren JW, et al. (2007b) Annual accumulation in the Mt. Nyainqentanglha ice core, southern Tibetan Plateau, China: relationships to atmospheric circulation over Asia. Arctic, Antarctic, and Alpine Research 39(4): 663–670. DOI:10.1657/1523-0430(07503)[KANG]2.0.CO;2Google Scholar
  28. Kang SC, Chen F, Gao TG, et al. (2009) Early onset of rainy season suppresses glacier melt: a case study on Zhadang glacier, Tibetan Plateau. Journal of Glaciology 55(192): 755–758. DOI:10.3189/002214309789470978CrossRefGoogle Scholar
  29. Kang SC, Xu YW, You QL, et al. (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters 5(1): 015101. DOI: 10.1088/1748-9326/5/1/015101CrossRefGoogle Scholar
  30. Keinholz C, Hock R, Arendt AA (2013) A new semi-automatic approach for dividing glacier complexes into individual glaciers. Journal of Glaciology 59(217): 925–937. DOI: 10.3189/2013JoG12J138CrossRefGoogle Scholar
  31. Kienholz C, Rich JL, Arendt AA, et al. (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. The Cryosphere 8(2): 503–519. DOI: 10.5194/tc-8-503-2014CrossRefGoogle Scholar
  32. Kropácek J, Braun A, Kang SC, et al. (2012) Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. International Journal of Applied Earth Observation and Geoinformation 17: 3–11. DOI: 10.1016/j.jag.2011.10.001CrossRefGoogle Scholar
  33. Kulkarni AV, Bahuguna IM, Rathore BP, et al. (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science 92(1): 69–74.Google Scholar
  34. Kulkarni AV, Rathore BP, Singh SK, et al. (2011) Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing 32(3): 601–615. DOI: 10.1080/01431161.2010.517802CrossRefGoogle Scholar
  35. Lambrecht A, Mayer C, Hagg W, et al. (2011) A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus. The Cryosphere 5(3): 525–538. DOI: 10.5194/tc-5-525-2011CrossRefGoogle Scholar
  36. Le Bris R, Paul F (2013) An automatic method to create flow lines for determination of glacier length: a pilot study with Alaskan glaciers. Computers & Geosciences 52: 234–245. DOI: 10.1016/j.cageo.2012.10.014CrossRefGoogle Scholar
  37. Leclercq PW, Oerlemans J, Basagic HJ, et al. (2014) A data set of worldwide glacier length fluctuations. The Cryosphere 8(2): 659–672. DOI: 10.5194/tc-8-659-2014CrossRefGoogle Scholar
  38. Li JJ, Zheng BX (1986) The glaciers of Xizang (Tibet). Science Press. Chinese Academy of Sciences, Beijing. (In Chinese)Google Scholar
  39. Liu JS, Wang SY, Yu SM, et al. (2009) Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global and Planetary Change 67(3-4): 209–217. DOI: 10.1016/j.gloplacha.2009.03.010.CrossRefGoogle Scholar
  40. Liu SY, Ding YJ, Shangguan DH, et al. (2006) Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Annals of Glaciology 43: 91–96. DOI: 10.3189/172756406781812168CrossRefGoogle Scholar
  41. Liu YS, Yao XJ, Guo WQ, et al. (2015) The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica Sinica 70(1): 3–16. (In Chinese)Google Scholar
  42. Liu W, Guo QH, Wang YX (2008) Temporal-spatial climate change in the last 35 years in Tibet and its geo-environmental consequences. Environmental Geology 54(8): 1747–1754. DOI:10.1007/s00254-007-0952-yCrossRefGoogle Scholar
  43. Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20(14): 1729–1742. DOI: 10.1002/1097-0088 (20001130)20:14 <1729::AID-JOC556>3.0.CO;2-YCrossRefGoogle Scholar
  44. Ma DT, Tu JJ, Cui P, et al. (2004) Approach to mountain hazards in Tibet, China. Journal of Mountain Science 1(2): 143–154. DOI: 10.1007/BF02919336CrossRefGoogle Scholar
  45. Machguth H, Huss M (2014) The length of the world’s glaciers-a new approach for the global calculation of center lines. The Cryosphere 8(5): 1741–1755. DOI: 10.5194/tc-8-1741-2014CrossRefGoogle Scholar
  46. Mattson LE, Gardner JS, Young GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publication 218: 289–296.Google Scholar
  47. Narama C, Kääb A, Duishonakunov M, et al. (2010) Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~ 1970), Landsat (~ 2000), and ALOS (~ 2007) satellite data. Global and Planetary Change 71(1-2): 42–54. DOI: 10.1016/j.gloplacha. 2009.08.002CrossRefGoogle Scholar
  48. Nie Y, Zhang YL, Liu LS, et al. (2010) Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. Journal of Geographical Sciences 20(5): 667–686. DOI: 10.1007/s11442-010-0803-8Google Scholar
  49. Nuimura T, Sakai A, Taniguchi K, et al. (2015)Google Scholar
  50. The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. The Cryosphere 9(3): 849–864. DOI: 10.5194/tc-9-849-2015Google Scholar
  51. Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264(5156): 243–245. DOI: 10.1126/science.264.5156.243.CrossRefGoogle Scholar
  52. Oerlemans J. (2005) Extracting a climate signal from 169 glacier records. Science 308(5722): 675–677. DOI: 10.1126/science.1107046.CrossRefGoogle Scholar
  53. Paul F (2002) Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian glacier inventory data. International Journal of Remote Sensing 23(4): 787–799. DOI: 10.1080/0143116011 0070708CrossRefGoogle Scholar
  54. Paul F, Andreassen LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. Journal of Glaciology 55(192): 607–618. DOI: 10.3189/002214309789471003CrossRefGoogle Scholar
  55. Paul F, Barry RG, Cogley JG, et al. (2009) Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology 50(53): 119–126. DOI: 10.3189/172756410790595778CrossRefGoogle Scholar
  56. Paul F, Barry RG, Cogley JG, et al. (2010) Guidelines for the compilation of glacier inventory data from digital sources. V1.0. edition. University of Zürich, World Glacier Monitoring Service (WGMS), Zürich. Available online at: (Accessed on 11 February 2015)Google Scholar
  57. Qin J, Yang K, Liang SL, et al. (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97(1-2): 321–327. DOI: 10.1007/s10584-009-9733-9CrossRefGoogle Scholar
  58. Racoviteanu AE, Paul F, Raup BH, et al. (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology 50(53): 53–69. DOI: 10.3189/1727564 10790595804CrossRefGoogle Scholar
  59. Raup B, Kääb A, Kargel JS, et al. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Computers & Geosciences 33(1): 104–125. DOI:10.1016/j.cageo.2006.05.015CrossRefGoogle Scholar
  60. Rees HG, Collins DN (2006) Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrological Processes 20(10): 2157–2169. DOI: 10.1002/hyp.6209.CrossRefGoogle Scholar
  61. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience 4(3): 156–159. DOI: 10.1038/ngeo1068CrossRefGoogle Scholar
  62. Schiefer E, Menounos B, Wheate R (2008) An inventory and morphometric analysis of British Columbia glaciers, Canada. Journal of Glaciology 54(186): 551–560. DOI: 10.3189/002214308785836995CrossRefGoogle Scholar
  63. Shahgedanova M, Nosenko G, Khromova T, et al. (2010) Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: an assessment using remote sensing and PRECIS regional climate model. Journal of Geophysical Research 115(D16): D16107. DOI: 10.1029/2009JD012976CrossRefGoogle Scholar
  64. Shangguan DH, Liu SY, Ding LF, et al. (2008) Variation of glaciers in the western Nyainqêntanglha range of Tibetan Plateau during 1970-2000. Journal of Glaciology and Geocryology 30(2): 204–210. (In Chinese)Google Scholar
  65. Shi YF, Huang MY, Ren B (1988) An introduction to the glaciers in China. Science Press, Beijing, China. (In Chinese)Google Scholar
  66. Shi YF, Huang MY, Yao TD, et al. (2008a) Glaciers and related environments in China. Science Press, Beijing, ChinaGoogle Scholar
  67. Shukla A, Gupta RP, Arora MK (2009) Estimation of debris cover and its temporal variation using optical satellite sensor data: a case study in Chenab basin, Himalaya. Journal of Glaciology 55(191): 444–452. DOI: 10.3189/0022143097888 16632CrossRefGoogle Scholar
  68. Stokes CR, Popovnin V, Aleynikov A, et al. (2007) Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Annals of Glaciology 46: 195–203. DOI: 10.3189/172756407782871468CrossRefGoogle Scholar
  69. Tachikawa T, Kaku M, Iwasaki A, et al. (2011) ASTER Global Digital Elevation Model Version 2-Summary of Validation Results. Summary of Validation Results, NASA Land Processes Distributed Active Archive Center and the Joint Japan-US ASTER Science Team.Google Scholar
  70. United States Geological Survey (USGS) (2011) Landsat processing details. U.S. Geological Survey, Reston, VA. Available online at: Processing_Details.php (Accessed on 6 May 2014)Google Scholar
  71. Wang X, Zhou AG, Siegert F, et al. (2012) Glacier temporalspatial change characteristics in western Nyainqentanglha Range, Tibetan Plateau 1977-2010. Earth Science-Journal of China University of Geosciences 37(5): 1082–1092. (In Chinese)Google Scholar
  72. Wang ZT (1992) Glacier dimension in China and its analysis method. Journal of Arid Land Resources and Environment 6(4): 1–10. (In Chinese)Google Scholar
  73. Wei JF, Liu SY, Guo WQ, et al. (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology 55(66): 213–222. DOI: 10.3189/2014AoG66A038.CrossRefGoogle Scholar
  74. Wiltshire AJ (2014) Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. The Cryosphere 8(3): 941–958. DOI: 10.5194/tc-8-941-2014CrossRefGoogle Scholar
  75. Wu YH, Zhu LP (2008) The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000. Journal of Geographical Sciences 18(2): 177–189. DOI: 10.1007/s11442-008-0177-3CrossRefGoogle Scholar
  76. Yao TD, Thompson L, Yang W, et al. (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climatic Change 2(9): 663–667. DOI: 10.1038/nclimate1580CrossRefGoogle Scholar
  77. Yao TD, Pu JC, Lu AX, et al. (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research 39(4): 642–650. DOI: 10.1657/1523-0430(07-510) [YAO]2.0.CO;2CrossRefGoogle Scholar
  78. Yao TD, Ren JW, Xu B (2008) Map of glaciers and lakes on the Tibetan Plateau and adjoining regions. Xi’an Cartographic Publishing House. Lanzhou Institute of Glaciology and Geocryology, Xi’an. (In Chinese)Google Scholar
  79. Yao XJ, Liu SY, Zhu Y, et al. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. Journal of Glaciology and Geocryology (In press). (In Chinese)Google Scholar
  80. Ye BS, Ding YJ, Liu FJ, et al. (2003) Responses of various-sized alpine glaciers and runoff to climatic change. Journal of Glaciology 49(164): 1–7. DOI:10.3189/172756503781830999CrossRefGoogle Scholar
  81. You QL, Kang SC, Pepin N, et al. (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global and Planetary Change 71(1-2): 124–133. DOI: 10.1016/j.gloplacha.2010.01. 020CrossRefGoogle Scholar
  82. You QL, Kang SC, Tian KM, et al.(2007) Preliminary analysis on climatic features at Mt. Nyainqentanglha, Tibetan Plateau. Journal of Mountain Science 25(4): 497–504. (In Chinese)Google Scholar
  83. Yu WS, Yao TD, Kang SC, et al. (2013) Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau). Journal of Hydrology 495: 64–73. DOI: 10.1016/j. jhydrol.2013.04.034CrossRefGoogle Scholar
  84. Zhang GS, Kang SC, Fujita K, et al. (2013) Energy and mass balance of Zhadang Glacier surface, central Tibetan Plateau. Journal of Glaciology 59(213): 137–148. DOI: 10.3189/2013JoG12J152CrossRefGoogle Scholar
  85. Zhang GQ, Yao TD, Xie HJ, et al. (2014) Lakes’ state and abundance across the Tibetan Plateau. Chinese Science Bulletin 59(24): 3010–3021. DOI: 10.1007/s11434-014-0258-xCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kun-peng Wu
    • 1
    • 2
  • Shi-yin Liu
    • 2
    Email author
  • Wan-qin Guo
    • 2
  • Jun-feng Wei
    • 1
    • 2
  • Jun-li Xu
    • 1
    • 2
  • Wei-jia Bao
    • 1
    • 2
  • Xiao-jun Yao
    • 1
    • 2
  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of ScienceLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations