Skip to main content
Log in

Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970-2014

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Glaciers in the western Nyainqentanglha Range are an important source of water for social and economic development. Changes in their area were derived from two Chinese glacier inventories; one from the 1970 1:50,000 scale Chinese Topographic Maps series and the other from Landsat TM/ETM+ images acquired in 2009. Analyses also included boundaries from 2000 and 2014 Landsat TM/ETM+ images. A continuing and accelerating shrinkage of glaciers occurred here from 1970 to 2014, with glacier area decreasing by 244.38 ± 29.48 km2 (27.4% ± 3.3%) or 0.62% ± 0.08% a–1. While this is consistent with a changing climate, local topographic parameters, such as altitude, slope, aspect and debris cover, are also important influences. Recession is manifested by a rise in the elevation of the glacier terminus. The shrinkage of glaciers with NE, N and NW orientations exceeded that of other aspects, and glaciers with SE and S orientations experienced less shrinkage. Changes in the average positive difference of glaciation (PDG) show that the western Nyainqentanglha Range has unfavorable conditions for glacier maintenance which is being exacerbated by a warming climate since 1970.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ageta Y, Fujita K (1996) Characteristics of mass balance of summer-accumulation type glaciers in the Himalayas and Tibetan Plateau. Zeitschrift für Gletscherkunde und Glazialgeologie 32(1-2): 61–65.

    Google Scholar 

  • Arefi H, Reinartz P (2011) Accuracy enhancement of ASTER global digital elevation models using ICESat data. Remote Sensing 3(7): 1323–1343. DOI: 10.3390/rs3071323

    Article  Google Scholar 

  • Arendt A, Bliss A, Bolch T, et al. (2015) Randolph glacier inventory-a dataset of global glacier outlines. Version 5.0. edition, University of Colorado, National Snow and Ice Data Center (NSIDC), Global Land Ice Measurements from Space (GLIMS), Boulder, CO, USA. Available online at: http://www.glims.org/RGI/00_rgi50_TechnicalNote.pdf (Accessed on 11 November 2015)

    Google Scholar 

  • Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change 59(1-4): 138–148. DOI: 10.1016/j. gloplacha.2006.11.031

    Article  Google Scholar 

  • Benn DI, Bolch T, Hands K, et al. (2012) Response of debriscovered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews 114(1-2): 156–174. DOI: 10.1016/j.earscirev. 2012.03.008

    Article  Google Scholar 

  • Berry PAM, Garlick JD, Smith RG (2007) Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sensing of Environment 106(1): 17–27. DOI: 10.1016/j.rse. 2006.07.011

    Article  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK, et al. (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology 57(203): 543–556. DOI: 10.3189/002214311796905604

    Article  Google Scholar 

  • Böhner J (2006) General climatic controls and topoclimatic variations of Central and High Asia. Boreas 35(2): 279–295. DOI: 10.1111/j.1502-3885.2006.tb01158.x

    Article  Google Scholar 

  • Bolch T, Menounos B, Wheate R (2010a) Landsat-based inventory of glaciers in western Canada, 1985-2005. Remote Sensing of Environment 114(1): 127–137. DOI: 10.1016/j.rse.2009.08.015

    Article  Google Scholar 

  • Bolch T, Yao T, Kang S, et al. (2010b) A glacier inventory for the western Nyainqentanglha Range and Nam Co Basin, Tibet, and glacier changes 1976-2009. The Cryosphere 4(3): 419–433. DOI: 10.5194/tc-4-419-2010

    Article  Google Scholar 

  • Brahmbhatt RM, Bahuguna I, Rathore BP, et al. (2012) Variation of snowline and mass balance of glaciers of Warwan and Bhut basins of western Himalaya using remote sensing technique. Journal of the Indian Society of Remote Sensing 40(4): 629–637. DOI: 10.1007/s12524-011-0186-z

    Article  Google Scholar 

  • Braithwaite RJ, Raper SCB (2009) Estimating equilbrium line altitude (ELA) from glacier inventory data. Annals of Glaciology 50(53): 127–132. DOI: 10.3189/172756410790595 930

    Article  Google Scholar 

  • Caidong C, Sorteberg A (2010) Modelled mass balance of the Xibu glacier, Tibetan Plateau: sensitivity to climatic change. Journal of Glaciology 56(196): 235–248. DOI: 10.3189/00221 4310791968467

    Article  Google Scholar 

  • Chen F, Kang SC, Zhang YJ, et al. (2009) Glaciers and lake change in response to climate change in the Nam Co Basin, Tibet. Journal of Mountain Science 18(6): 641–647. (In Chinese)

    Google Scholar 

  • Cogley JG (2009) A more complete version of the world glacier inventory. Annals of Glaciology 50(53): 32–38. DOI: 10.3189/172756410790595859

    Article  Google Scholar 

  • Falorni G, Teles V, Vivoni ER, et al. (2005) Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. Journal of Geophysical Research 110(F2): F02005. DOI: 10.1029/2003JF000113

    Article  Google Scholar 

  • Frauenfelder R, Kääb A (2009) Glacier mapping from multitemporal optical remote sensing data within the Brahmaputra river basin. 33rd International Symposium on Remote Sensing of Environment: Sustaining the Millenium Development Goals, 4-8 May 2009, Stresa, Italy. International Center for Remote Sensing of Environment, Tucson, AZ, 2009, digital media: Paper 299. Available online at: http://folk.uio.no/kaeaeb/publications/299_R.Frauenfelder.pdf (Accessed on 4 February 2015)

    Google Scholar 

  • Frey H, Paul F (2012) On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. International Journal of Applied Earth Observation and Geoinformation 18: 480–490. DOI: 10.1016/j.jag.2011.09.020

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134): 852–857. DOI: 10.1126/science. 1234532

    Article  Google Scholar 

  • Guo WQ, Liu SY, Yu PC, et al. (2011) Automatic extraction of ridgelines using on drainage boundaries and aspect difference. Science of Surveying and Mapping 36(6): 210–213. (In Chinese)

    Google Scholar 

  • Guo WQ, Liu SY, Wei JF, et al. (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology 54(63): 299–310. DOI: 10.3189/2013AoG63A495

    Article  Google Scholar 

  • Guo WQ, Liu SY, Xu JL, et al. (2015) The second Chinese glacier inventory: data, methods, and results. Journal of Glaciology 61(226): 357–372. DOI: 10.3189/2015JoG14J209

    Article  Google Scholar 

  • Han HD, Wang J, Wei JF, et al. (2010) Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. Journal of Glaciology 56(196): 287–296. DOI: 10.3189/002214310791968430

    Article  Google Scholar 

  • Immerzeel W W, van Beek L P H, Bierkens M F P (2010) Climate change will affect the Asian water towers. Science 328(5984): 1382–1385. DOI: 10.1126/science.1183188

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, et al. (eds.) Cambridge University Press Cambridge, UK and New York, NY, USA. pp 1–30. DOI: 10.1017/CBO9781107415324.004

    Google Scholar 

  • Kang SC, Chen F, Ye QH, et al. (2007a) Glacier retreating dramatically on the Mt. Nyainqêntanglha during the last 40 years. Journal of Glaciology and Geocryology 29(6): 869–873. (In Chinese)

    Google Scholar 

  • Kang SC, Qin DH, Ren JW, et al. (2007b) Annual accumulation in the Mt. Nyainqentanglha ice core, southern Tibetan Plateau, China: relationships to atmospheric circulation over Asia. Arctic, Antarctic, and Alpine Research 39(4): 663–670. DOI:10.1657/1523-0430(07503)[KANG]2.0.CO;2

    Google Scholar 

  • Kang SC, Chen F, Gao TG, et al. (2009) Early onset of rainy season suppresses glacier melt: a case study on Zhadang glacier, Tibetan Plateau. Journal of Glaciology 55(192): 755–758. DOI:10.3189/002214309789470978

    Article  Google Scholar 

  • Kang SC, Xu YW, You QL, et al. (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters 5(1): 015101. DOI: 10.1088/1748-9326/5/1/015101

    Article  Google Scholar 

  • Keinholz C, Hock R, Arendt AA (2013) A new semi-automatic approach for dividing glacier complexes into individual glaciers. Journal of Glaciology 59(217): 925–937. DOI: 10.3189/2013JoG12J138

    Article  Google Scholar 

  • Kienholz C, Rich JL, Arendt AA, et al. (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. The Cryosphere 8(2): 503–519. DOI: 10.5194/tc-8-503-2014

    Article  Google Scholar 

  • Kropácek J, Braun A, Kang SC, et al. (2012) Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. International Journal of Applied Earth Observation and Geoinformation 17: 3–11. DOI: 10.1016/j.jag.2011.10.001

    Article  Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP, et al. (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science 92(1): 69–74.

    Google Scholar 

  • Kulkarni AV, Rathore BP, Singh SK, et al. (2011) Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing 32(3): 601–615. DOI: 10.1080/01431161.2010.517802

    Article  Google Scholar 

  • Lambrecht A, Mayer C, Hagg W, et al. (2011) A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus. The Cryosphere 5(3): 525–538. DOI: 10.5194/tc-5-525-2011

    Article  Google Scholar 

  • Le Bris R, Paul F (2013) An automatic method to create flow lines for determination of glacier length: a pilot study with Alaskan glaciers. Computers & Geosciences 52: 234–245. DOI: 10.1016/j.cageo.2012.10.014

    Article  Google Scholar 

  • Leclercq PW, Oerlemans J, Basagic HJ, et al. (2014) A data set of worldwide glacier length fluctuations. The Cryosphere 8(2): 659–672. DOI: 10.5194/tc-8-659-2014

    Article  Google Scholar 

  • Li JJ, Zheng BX (1986) The glaciers of Xizang (Tibet). Science Press. Chinese Academy of Sciences, Beijing. (In Chinese)

    Google Scholar 

  • Liu JS, Wang SY, Yu SM, et al. (2009) Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global and Planetary Change 67(3-4): 209–217. DOI: 10.1016/j.gloplacha.2009.03.010.

    Article  Google Scholar 

  • Liu SY, Ding YJ, Shangguan DH, et al. (2006) Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Annals of Glaciology 43: 91–96. DOI: 10.3189/172756406781812168

    Article  Google Scholar 

  • Liu YS, Yao XJ, Guo WQ, et al. (2015) The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica Sinica 70(1): 3–16. (In Chinese)

    Google Scholar 

  • Liu W, Guo QH, Wang YX (2008) Temporal-spatial climate change in the last 35 years in Tibet and its geo-environmental consequences. Environmental Geology 54(8): 1747–1754. DOI:10.1007/s00254-007-0952-y

    Article  Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20(14): 1729–1742. DOI: 10.1002/1097-0088 (20001130)20:14 <1729::AID-JOC556>3.0.CO;2-Y

    Article  Google Scholar 

  • Ma DT, Tu JJ, Cui P, et al. (2004) Approach to mountain hazards in Tibet, China. Journal of Mountain Science 1(2): 143–154. DOI: 10.1007/BF02919336

    Article  Google Scholar 

  • Machguth H, Huss M (2014) The length of the world’s glaciers-a new approach for the global calculation of center lines. The Cryosphere 8(5): 1741–1755. DOI: 10.5194/tc-8-1741-2014

    Article  Google Scholar 

  • Mattson LE, Gardner JS, Young GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publication 218: 289–296.

    Google Scholar 

  • Narama C, Kääb A, Duishonakunov M, et al. (2010) Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~ 1970), Landsat (~ 2000), and ALOS (~ 2007) satellite data. Global and Planetary Change 71(1-2): 42–54. DOI: 10.1016/j.gloplacha. 2009.08.002

    Article  Google Scholar 

  • Nie Y, Zhang YL, Liu LS, et al. (2010) Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. Journal of Geographical Sciences 20(5): 667–686. DOI: 10.1007/s11442-010-0803-8

    Google Scholar 

  • Nuimura T, Sakai A, Taniguchi K, et al. (2015)

  • The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. The Cryosphere 9(3): 849–864. DOI: 10.5194/tc-9-849-2015

  • Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264(5156): 243–245. DOI: 10.1126/science.264.5156.243.

    Article  Google Scholar 

  • Oerlemans J. (2005) Extracting a climate signal from 169 glacier records. Science 308(5722): 675–677. DOI: 10.1126/science.1107046.

    Article  Google Scholar 

  • Paul F (2002) Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian glacier inventory data. International Journal of Remote Sensing 23(4): 787–799. DOI: 10.1080/0143116011 0070708

    Article  Google Scholar 

  • Paul F, Andreassen LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. Journal of Glaciology 55(192): 607–618. DOI: 10.3189/002214309789471003

    Article  Google Scholar 

  • Paul F, Barry RG, Cogley JG, et al. (2009) Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology 50(53): 119–126. DOI: 10.3189/172756410790595778

    Article  Google Scholar 

  • Paul F, Barry RG, Cogley JG, et al. (2010) Guidelines for the compilation of glacier inventory data from digital sources. V1.0. edition. University of Zürich, World Glacier Monitoring Service (WGMS), Zürich. Available online at: http://globglacier.ch/docs/guidelines_inventory.pdf (Accessed on 11 February 2015)

    Google Scholar 

  • Qin J, Yang K, Liang SL, et al. (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97(1-2): 321–327. DOI: 10.1007/s10584-009-9733-9

    Article  Google Scholar 

  • Racoviteanu AE, Paul F, Raup BH, et al. (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology 50(53): 53–69. DOI: 10.3189/1727564 10790595804

    Article  Google Scholar 

  • Raup B, Kääb A, Kargel JS, et al. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Computers & Geosciences 33(1): 104–125. DOI:10.1016/j.cageo.2006.05.015

    Article  Google Scholar 

  • Rees HG, Collins DN (2006) Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrological Processes 20(10): 2157–2169. DOI: 10.1002/hyp.6209.

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience 4(3): 156–159. DOI: 10.1038/ngeo1068

    Article  Google Scholar 

  • Schiefer E, Menounos B, Wheate R (2008) An inventory and morphometric analysis of British Columbia glaciers, Canada. Journal of Glaciology 54(186): 551–560. DOI: 10.3189/002214308785836995

    Article  Google Scholar 

  • Shahgedanova M, Nosenko G, Khromova T, et al. (2010) Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: an assessment using remote sensing and PRECIS regional climate model. Journal of Geophysical Research 115(D16): D16107. DOI: 10.1029/2009JD012976

    Article  Google Scholar 

  • Shangguan DH, Liu SY, Ding LF, et al. (2008) Variation of glaciers in the western Nyainqêntanglha range of Tibetan Plateau during 1970-2000. Journal of Glaciology and Geocryology 30(2): 204–210. (In Chinese)

    Google Scholar 

  • Shi YF, Huang MY, Ren B (1988) An introduction to the glaciers in China. Science Press, Beijing, China. (In Chinese)

    Google Scholar 

  • Shi YF, Huang MY, Yao TD, et al. (2008a) Glaciers and related environments in China. Science Press, Beijing, China

    Google Scholar 

  • Shukla A, Gupta RP, Arora MK (2009) Estimation of debris cover and its temporal variation using optical satellite sensor data: a case study in Chenab basin, Himalaya. Journal of Glaciology 55(191): 444–452. DOI: 10.3189/0022143097888 16632

    Article  Google Scholar 

  • Stokes CR, Popovnin V, Aleynikov A, et al. (2007) Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Annals of Glaciology 46: 195–203. DOI: 10.3189/172756407782871468

    Article  Google Scholar 

  • Tachikawa T, Kaku M, Iwasaki A, et al. (2011) ASTER Global Digital Elevation Model Version 2-Summary of Validation Results. Summary of Validation Results, NASA Land Processes Distributed Active Archive Center and the Joint Japan-US ASTER Science Team.

    Google Scholar 

  • United States Geological Survey (USGS) (2011) Landsat processing details. U.S. Geological Survey, Reston, VA. Available online at: http://landsat.usgs.gov/Landsat_ Processing_Details.php (Accessed on 6 May 2014)

    Google Scholar 

  • Wang X, Zhou AG, Siegert F, et al. (2012) Glacier temporalspatial change characteristics in western Nyainqentanglha Range, Tibetan Plateau 1977-2010. Earth Science-Journal of China University of Geosciences 37(5): 1082–1092. (In Chinese)

    Google Scholar 

  • Wang ZT (1992) Glacier dimension in China and its analysis method. Journal of Arid Land Resources and Environment 6(4): 1–10. (In Chinese)

    Google Scholar 

  • Wei JF, Liu SY, Guo WQ, et al. (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology 55(66): 213–222. DOI: 10.3189/2014AoG66A038.

    Article  Google Scholar 

  • Wiltshire AJ (2014) Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. The Cryosphere 8(3): 941–958. DOI: 10.5194/tc-8-941-2014

    Article  Google Scholar 

  • Wu YH, Zhu LP (2008) The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000. Journal of Geographical Sciences 18(2): 177–189. DOI: 10.1007/s11442-008-0177-3

    Article  Google Scholar 

  • Yao TD, Thompson L, Yang W, et al. (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climatic Change 2(9): 663–667. DOI: 10.1038/nclimate1580

    Article  Google Scholar 

  • Yao TD, Pu JC, Lu AX, et al. (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research 39(4): 642–650. DOI: 10.1657/1523-0430(07-510) [YAO]2.0.CO;2

    Article  Google Scholar 

  • Yao TD, Ren JW, Xu B (2008) Map of glaciers and lakes on the Tibetan Plateau and adjoining regions. Xi’an Cartographic Publishing House. Lanzhou Institute of Glaciology and Geocryology, Xi’an. (In Chinese)

    Google Scholar 

  • Yao XJ, Liu SY, Zhu Y, et al. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. Journal of Glaciology and Geocryology (In press). (In Chinese)

  • Ye BS, Ding YJ, Liu FJ, et al. (2003) Responses of various-sized alpine glaciers and runoff to climatic change. Journal of Glaciology 49(164): 1–7. DOI:10.3189/172756503781830999

    Article  Google Scholar 

  • You QL, Kang SC, Pepin N, et al. (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global and Planetary Change 71(1-2): 124–133. DOI: 10.1016/j.gloplacha.2010.01. 020

    Article  Google Scholar 

  • You QL, Kang SC, Tian KM, et al.(2007) Preliminary analysis on climatic features at Mt. Nyainqentanglha, Tibetan Plateau. Journal of Mountain Science 25(4): 497–504. (In Chinese)

    Google Scholar 

  • Yu WS, Yao TD, Kang SC, et al. (2013) Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau). Journal of Hydrology 495: 64–73. DOI: 10.1016/j. jhydrol.2013.04.034

    Article  Google Scholar 

  • Zhang GS, Kang SC, Fujita K, et al. (2013) Energy and mass balance of Zhadang Glacier surface, central Tibetan Plateau. Journal of Glaciology 59(213): 137–148. DOI: 10.3189/2013JoG12J152

    Article  Google Scholar 

  • Zhang GQ, Yao TD, Xie HJ, et al. (2014) Lakes’ state and abundance across the Tibetan Plateau. Chinese Science Bulletin 59(24): 3010–3021. DOI: 10.1007/s11434-014-0258-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-yin Liu.

Additional information

http://orcid.org/0000-0002-7283-4579

http://orcid.org/0000-0002-9625-7497

http://orcid.org/0000-0002-3211-9300

http://orcid.org/0000-0002-9625-7497

http://orcid.org/0000-0001-5078-3128

http://orcid.org/0000-0003-1593-3041

http://orcid.org/0000-0003-3127-9473

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Kp., Liu, Sy., Guo, Wq. et al. Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970-2014. J. Mt. Sci. 13, 1358–1374 (2016). https://doi.org/10.1007/s11629-016-3997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-3997-0

Keywords

Navigation