Skip to main content
Log in

Spatial variability of soil development indices and their compatibility with soil taxonomic classes in a hilly landscape: a case study at Bandar village, Northern Iran

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Soil complexity and its multivariable nature restrict the precision of soil maps that are essential tools for soil sustainable management. Most methods developed for reducing impurities of soil map units focus on soil external properties. Taking into account the soil internal properties like geochemical weathering indices could increase the map unit’s purity. However, the compatibility of these indices with Soil Taxonomic Classes has not been studied yet. This study has been performed in a hilly region with different soil types, vegetation and diverse topographic attributes to illustrate the spatial variability of soil weathering indices and their compatibility with Soil Taxonomic Classes. The grid sampling is at 100 m interval. Physico-chemical and total elemental analyses were performed on 184 and 56 soil samples respectively. Eight topographic attributes and 14 common soil development indices were determined. Principal components analysis (PCA) was done to identify the most important components. The results indicated that Morphological Index (MI) was the best index to show the degree of soil development in the studied region. Spatial distribution of Soil Taxonomic Classes showed relatively good compatibility with the first principal component (PC1), Vogt (V) and morphological indices. This study showed that using soil development indices with the conventional methods could be helpful tools in soil survey investigations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badía D, Martí C, Palacio E, et al. (2009) Soil evolution over the Quaternary period in a semiarid climate (Segre river terraces, northeast Spain). Catena 77(3): 165–174. DOI: 10.1016/j.catena.2008.12.012

    Article  Google Scholar 

  • Baumann F, Schmidt K, Dörfer C, et al. (2014) Pedogenesis, permafrost, substrate and topography: plot and landscape scale interrelations of weathering processes on the centraleastern Tibetan Plateau. Geoderma 226: 300–315. DOI: 10.1016/j.geoderma.2014.02.019

    Article  Google Scholar 

  • Bétard F (2012) Spatial variation of soil weathering processes in a tropical mountain environment: The Baturité massif and its pediment (Ceará, NE Brazil). Catena 93: 18–28. DOI: 10.1016/j.catena.2012.01.013

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1): 43–69. DOI: 10.1080/02626667909491834

    Article  Google Scholar 

  • Bocchi S, Castrignanò A, Fornaro F, et al. (2000) Application of factorial kriging for mapping soil variation at field scale. European Journal of Agronomy 13: 295–308. DOI: 10.1016/S1161-0301(00)00061-7

    Article  Google Scholar 

  • Bockheim JG, Gennadiyev AN, Hammer RD, et al. (2005) Historical development of key concepts in pedology. Geoderma 124: 23–36. DOI: 10.1016/j.geoderma.2004.03.004

    Article  Google Scholar 

  • Bockheim JG, Gennadiyev AN, Hartenink AE, et al. (2014) Soilforming factors and Soil Taxonomy. Geoderma 226-227: 231–237. DOI: 10.1016/j.geoderma.2014.02.016

    Article  Google Scholar 

  • Bohlen PJ, Groffman PM, Driscoll CT, et al. (2001) Plant-soilmicrobial interactions in a northern hardwood forest. Ecology 82(4): 965–978. DOI: 10.1890/0012-9658(2001)082[0965: PSMIIA]2.0.CO;2

    Google Scholar 

  • Böhlert R, Mirabella A, Plötze M, et al. (2011) Landscape evolution in Val Mulix, eastern Swiss Alps–soil chemical and mineralogical analyses as age proxies. Catena 87(3): 313–325. DOI: 10.1016/j.catena.2011.06.013

    Article  Google Scholar 

  • Brady NC, Weil RR (eds.) (2002) The Nature and Properties of Soils. 13th edition. Prentice Hall, Upper Saddle River, NJ, USA, p 960. ISBN: 13-016763-0

    Google Scholar 

  • Burke BC, Heimsath AM, White AF (2007) Coupling chemical weathering with soil production across soil-mantled landscapes.Earth Surface Processes and Landforms 32: 853–873. DOI: 10.1002/esp.1443

  • Burke BC, Heimsath AM, Dixon JL, et al. (2009) Weathering the scarpment: chemical and physical rates and processes, south-eastern Australia. Earth Surface Processes and Landforms 34: 768–785. DOI: 10.1002/esp.1764

    Article  Google Scholar 

  • Cambardella CA, Moorman TB, Parkin TB, et al. (1994) Fieldscale variability of soils properties in central Iowa soils.Soil Science Society of America Journal 58(5): 1501–1511. DOI: 10.2136/sssaj1994.03615995005800050033x

  • De Jayawardena US, Izawa E (1994) A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka. Engineering Geology 36: 303–310.

    Article  Google Scholar 

  • Duzgoren-Aydin NS, Aydin A, Malpas J (2002) Re-assessment of chemical weathering indices: case study of pyroclastic rocks of Hong Kong. Engineering Geology 63(1-2): 99–119. DOI: 10.1016/S0013-7952(01)00073-4

    Article  Google Scholar 

  • Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments. Catena 45(1): 19–47. DOI: 10.1016/S0341-8162(01)00138-2

    Article  Google Scholar 

  • Egli M, Mirabella A, Sartori G, et al. (2003) Weathering rates as a function of climate: results from a climosequence of the Val Genova (Trentino, Italian Alps). Geoderma 111: 99–121. DOI: 10.1016/S0016-7061(02)00256-2

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implication for paleoweathering conditions and provenance.Geology 23: 921–924. DOI: 10.1130/0091-7613(1995)

  • Gabler RE, Petersen JF, Trapasso LM (2006) Soils and Soil Development. Essentials of Physical Geography, 8th Edition. pp 330–360.

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis, in: Klute, A. (Eds.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed. Agronomy 9: 383–411.

    Google Scholar 

  • Graham RC, O’Geen AT (2010) Soil mineralogy trends in California landscapes. Geoderma 154(3-4): 418–437. DOI: 10.1016/j.geoderma.2009.05.018

    Article  Google Scholar 

  • Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management 257(1): 1–7. DOI: 10.1016/j.foreco.2008.08.010

    Article  Google Scholar 

  • Grunwald S, Reddy KR, Prenger JP, et al. (2007) Modeling of the spatial variability of biogeochemical soil properties in a freshwater ecosystem. Ecological Modelling 201: 571–535. DOI: 10.1016/j.ecomodel.2006.10.026

    Article  Google Scholar 

  • Hanna AY, Harlan PW, Lewis DT (1982) Soil available water as influenced by landscape position and aspect. Agronomy Journal 74(6): 999–1004. DOI: 10.2134/agronj1982.00021962007400060016x

    Article  Google Scholar 

  • Harden JW (1982). A quantitative index of soil development from field descripions: examples from a chronosequence in central California. Geoderma 28(1): 1–28. DOI: 10.1016/0016-7061(82)90037-4

  • Harnois L (1988) The CIW index: a new chemical index of weathering.Sedimentary Geology 55(3-4): 319–322. DOI: 10.1016/0037-0738(88)90137-6

  • Hengl T, Reuter HI (eds.) (2008) Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, vol. 33, Elsevier, p. 772.

    Google Scholar 

  • Herbillon AJ (1986) Chemical estimation of weatherable minerals present in the diagnostic horizons of low activity clay soils, in: Proceeding of the 8th international classification workshop: classification, characterization and utilization of oxisols. Part 1 (eds Beinroth FH, Camargo MN, Eswaran H), pp. 39–48.

    Google Scholar 

  • Jenny H (1941) Factors of Soil Formation: A System of Quantitative Pedology. McGraw-Hill, New York, USA.

    Google Scholar 

  • Johnson CE, Ruiz-Méndez JJ, Lawrence GB (2000) Forest soil chemistry and terrain attributes in a Catskills watershed. Soil Science Societyof America Journal 64(5): 1804–1814. DOI: 10.2136/sssaj2000.6451804x

    Article  Google Scholar 

  • Johnson R, Wichern D (2002) Applied Multivariate Statistical Analysis, Fifth ed. Prentice-Hall, NJ, USA.

    Google Scholar 

  • Kronberg BI, Nesbitt HW (1981) Quantification of weathering of soil chemistry and soil fertility. Journal of Soil Science 32: 453–459. DOI: 10.1111/j.1365-2389.1981.tb01721.x

    Article  Google Scholar 

  • Leij FJ, Romano N, Palladino M, et al. (2004) Topographical attributes to predict soil hydraulic properties along a hillslope transect. Water Resources Research 40 W02407. DOI: 10.1029/2002wr001641

    Article  Google Scholar 

  • Li P, Feng X, Qiu G, et al. (2012) Mercury pollution in Wuchuan mercury mining area, Guizhou, Southwestern China: the impacts from large scale and artisanal mercury mining. Environment International 42: 59–66. DOI: 10.1016/j.envint.2011.04.008

    Article  Google Scholar 

  • Lin YS, Lin YW, Wang Y, et al. (2007) Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan–Hukou Tableland, Northwestern Taiwan. Geomorphology 90(1-2): 36–54. DOI: 10.1016/j.geomorph.2007.01.013

    Article  Google Scholar 

  • Lybrand R, Rasmussen C, Jardine A, et al. (2011) The effects of climate and landscape position on chemical denudation and mineral transformation in the Santa Catalina mountain critical zone observatory. Applied Geochemistry 26(S) S80–S84. DOI: 10.1016/j.apgeochem.2011.03.036

    Article  Google Scholar 

  • Lybrand RA, Rasmussen C (2015) Quantifying climate and landscape position controls on soil development in semiarid ecosystems. Soil Science Society of America Journal 79(1): 104–116. DOI: 10.2136/sssaj2014.06.0242.

    Article  Google Scholar 

  • Moazallahi M, Farpoor M H (2012) Soil Genesis and Clay Mineralogy along the Xeric-Aridic Climotoposequence in South Central Iran. Journal of Agricultural Science and Technology 14: 683–696.

    Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, et al. (1993) Soil attributes prediction using terrain analysis. Soil Science Society of America Journal 57(2): 443–452. DOI: 10.2136/sssaj1993. 572NPb

    Article  Google Scholar 

  • National Cartographic Center (2014) Research Institude of NCC, Tehran, Iran (www.ncc.org.ir).

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717. DOI: 10.1038/299715a0

    Article  Google Scholar 

  • Osat M, Heidari A, Karimian Eghbal M, et al. (2016) Impacts of topographic attributes on Soil Taxonomic Classes and weathering indices in a hilly landscape in Northern Iran. Geoderma 281: 90–101. DOI: 10.1016/j.geoderma.2016.06.010

    Article  Google Scholar 

  • Ozaytekin HH, Mutlu HH, Dedeoglu M (2012) Soil formation on a calcic chronosequence of Ancient Lake Konya in Central Anatolia, Turkey. Journal of African Earth Science 76: 66–74. DOI: 10.1016/j.jafrearsci.2012.09.002

    Article  Google Scholar 

  • Parker A (1970) An index of weathering for silicate rocks. Geological Magazine 107: 501–504. DOI: 10.1017/S0016756800058581.

    Article  Google Scholar 

  • Price JR, Velbel MA (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology 202(3-4): 397–416. DOI: 10.1016/j.chemgeo.2002.11.001

    Article  Google Scholar 

  • Rech JA, Reeves RW, Hendricks DM (2001) The influence of slope aspect on soil weathering processes in the Springerville volcanic field, Arizona. Catena 43(1): 49–62. DOI: 10.1016/S0341-8162(00)00118-1

    Article  Google Scholar 

  • Rhoades JD (1982) Cation-exchange capacity, in: Page, A. L. (Eds), Methods of Soil Analysis. Part 2. ASA-SSSA, Madison, pp. 149–157.

    Google Scholar 

  • Richards BK, Steenhuisa TS, Peverlyb JH, et al. (1998) Metal mobolity at an old, heavily loaded sludge application site. Environmental Pollution 99(3): 365–377. DOI: 10.1016/S0269-7491(98)00011-6

    Article  Google Scholar 

  • Rodríguez Martin JA, Ramos-Miras JJ, Boluda R, et al. (2013) Spatial relations of heavy metals in arable and greenhouse soils of a mediterranean environment region (Spain). Geoderma 200-201: 180–188. DOI: 10.1016/j.geoderma.2013. 02.014

    Article  Google Scholar 

  • Ruhe RV (1956) Geomorphic surfaces and the nature of soils. Soil Science 82(6): 441–455.

    Article  Google Scholar 

  • Ruxton BP (1968) Measure of the degree of chemical weathering of rocks. Journal of Geology 76(5): 518–527. DOI: 10.1086/627357

    Article  Google Scholar 

  • Sauer D (2010) Approaches to quantify progressive soil development with time in Mediterranean climate—I. Use of field criteria.Journal of Plant Nutrition and Soil Science 173(6): 822–842. DOI: 10.1002/jpln.201000136

    Article  Google Scholar 

  • Soil Survey Staff (2014) Soil Taxonomy, a basic system of soil classification for making and interpreting soil surveys. USDA, Agricultural Handbook, vol: 436.

    Google Scholar 

  • Taboada T, Lado L, Ferro-Vázquez C, et al. (2015) Chemical weathering in the volcanic soils of Isla Santa Cruz (Galápagos Island, Ecuador). Geoderma 261: 160–168. DOI: 10.1016/j.geoderma.2015.07.019

    Article  Google Scholar 

  • Tsui CC, Chen ZS, Hsieh CF (2004) Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 123(1-2): 131–142. DOI: 10.1016/j.geoderma.2004.01.031

    Article  Google Scholar 

  • Turnbaugh SJL, Evans CV (1994) A determinative soil development index for pedo-stratigraphic studies. Geoderma 61(1-2): 39–59. DOI: 10.1016/0016-7061(94)90010-8

    Article  Google Scholar 

  • Vogt T (1927) Sulitelmafeltets geologios petrografi, Norges Geol. Unders., no. 121 (English summary, p. 449-531).

    Google Scholar 

  • Walkey A, Black IA (1934) An examination of Degtiareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis.1. Experimental.Soil Science Society of American Journal 79: 459–465.

    Google Scholar 

  • Wang HJ, Shi XZ, Yu DS, et al. (2009) Factors determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan Province, China. Soil and Tillage Research 105(2): 300–306. DOI: 10.1016/j.still.2008.08.010

    Article  Google Scholar 

  • Yimer F, Ledin S, Abdelkadir A (2006) Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 135: 335–344. DOI: 10.1016/j.geoderma.2006.01.005

    Article  Google Scholar 

  • Zhang GL, Pan JH, Huang CM, et al. (2007) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Revista Mexicana de Ciencias Geologicas 24(2): 261–269.

    Google Scholar 

  • Zhang S, Huang Y, Shen C, et al. (2012) Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma 171-172: 35–43. DOI: 10.1016/j.geoderma.2011.07.012

    Article  Google Scholar 

  • Zhou X, Li A, Jiang F, et al. (2014) Effects of grain size distribution on mineralogical and chemical compositions: a case study from size-fractional sediments of the Huanghe (Yellow River) and Changjiang (Yangtze River). Geological Journal 50(4): 414–433. DOI: 10.1002/gj.2546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Heidari.

Additional information

http://orcid.org/0000-0002-7823-6844

http://orcid.org/0000-0001-8110-1003

http://orcid.org/0000-0001-8456-2358

http://orcid.org/0000-0002-0689-6149

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osat, M., Heidari, A., Karimian Eghbal, M. et al. Spatial variability of soil development indices and their compatibility with soil taxonomic classes in a hilly landscape: a case study at Bandar village, Northern Iran. J. Mt. Sci. 13, 1746–1759 (2016). https://doi.org/10.1007/s11629-016-3952-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-3952-0

Keywords

Navigation