Journal of Mountain Science

, Volume 14, Issue 7, pp 1373–1383 | Cite as

Soil detachment and transport under the combined action of rainfall and runoff energy on shallow overland flow

  • Guang-lu LiEmail author
  • Teng-hui Zheng
  • Yu Fu
  • Bai-qiao Li
  • Teng Zhang


Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based on the conversion theory of kinetic and potential energy using artificial rainfall and mechanical calculation. The results show that the ratio of sediment detachment in sloping fallow overland flow increases with the slope gradient, rainfall energy and runoff energy, while the sediment detachment ratio under raindrop impact are significantly higher than those under no raindrop impact. The sediment concentration increases with the slope gradient and rainfall energy; when the slope gradient and rainfall energy are constant, the sediment concentration decreases as the runoff energy increases. Rainfall disturbance coefficients have a logarithmic correlation with the rate of rainfall energy and runoff energy. On the same slope gradient, when the rainfall energy is constant, the disturbance coefficient decreases as the runoff energy increases, while when the runoff energy is constant, the disturbance coefficient increases as the rainfall energy increases. Rainfall energy results in sediment detachment, and runoff energy is the transportation for erosion sediment. This showed that rainfall energy and runoff energy are important in the sediment detachment and transportation of shallow overland flow.


Shallow overland flow Rainfall energy Runoff energy Sediment detachment Disturbance coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the anonymous reviewers for their insightful comments on the original manuscript. This research was supported by the National Natural Science Foundation of China (41571262) and the Chinese Ministry of Water Resources Science and Technology Promotion Program (TG1308).


  1. An J, Zheng FL, Lu J, et al. (2012) Investigating the Role of Raindrop Impact on Hydrodynamic Mechanism of Soil Erosion under Simulated Rainfall Conditions. Soil Science 177(8): 517–526. DOI:10.1097/SS.0b013e3182639de1CrossRefGoogle Scholar
  2. Baartman JE, Jetten VG, Ritsema CJ, et al. (2012) Exploring effects of rainfall intensity and duration on soil erosion at the catchment scale using open LISEM: Prado catchment, SE Spain. Hydrological Processes 26(7): 1034–1049. DOI: 10.1002/hyp.8196CrossRefGoogle Scholar
  3. Bradford JM, Ferris JE, Remley PA (1987) Interrill soil erosion processes: II. Relationship of splash detachment to soil properties.Soil Science Society of America Journal 51(6): 1571–1575.DOI:10.2136/sssaj1987.03615995005100060030xCrossRefGoogle Scholar
  4. Brodie I, Rosewell C (2007) Theoretical relationships between rainfall intensity and kinetic energy variants associated with storm water particle washoff. Journal of Hydrology 340(1-2): 40–47. DOI:10.1016/j.jhydrol.2007.03.019CrossRefGoogle Scholar
  5. Chen L, Young MH (2006) Green-Ampt infiltration model for sloping surfaces. Water Resources Research 42(7): 1–9.DOI:10.1029/2005WR004468CrossRefGoogle Scholar
  6. Cheng Q, Ma W, Cai Q (2008) The relative importance of soil crust and slope angle in runoff and soil loss: a case study in the hilly areas of the Loess Plateau, North China. Geo Journal 71(2): 117–125.DOI: 10.1007/s10708-008-9149-5Google Scholar
  7. Cuomo S, Della Sala M, NovitàA (2015) Physically based modelling of soil erosion induced by rainfall in small mountain basins. Geomorphology 243: 106–115. DOI:10.1016/j.geomorp h.2015.040019CrossRefGoogle Scholar
  8. Dunne T, Zhang W, Aubry B (1991) Effects of rainfall, vegetation, and microtography on infiltration and runoff. Water Resources Research 27(9): 2271–2285. DOI: 10.1029/91WR01585CrossRefGoogle Scholar
  9. Ellison W (1944) Studies of raindrop erosion. Agricultural Engineering 25(4): 131–136.Google Scholar
  10. Ellison W (1947) Soil erosion studies-part I. Agricultural Engineering 28: 145–146.Google Scholar
  11. Erpul G, Gabriels D, Norton LD (2004) Wind effects on sediment transport by raindrop-impacted shallow flow: A wind tunnel study. Earth Surface Processes & Landforms 29(8): 955–967. DOI: 10.1002/esp.1077CrossRefGoogle Scholar
  12. Erpul G, Gabriels D, Norton LD, et al. (2013a) Mechanics of interrill erosion with wind-driven rain. Earth Surface Processes and Landforms 38(2): 160–168. DOI: 10.1002/esp. 3280CrossRefGoogle Scholar
  13. Erpul G, Gabriels D, Norton LD, et al. (2013b) Raindrop and flow interactions for interrill erosion with wind-driven rain (WDR). Journal of Hydraulic Research 51(5): 548–557. DOI: 10.1080/00221686.2013.778339CrossRefGoogle Scholar
  14. Essig ET, Corradini C, Morbidelli R, Govindaraju RS (2009) Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. Journal of Hydrology 374(1-2): 30–42. DOI:10.1016/j.jhydrol.2009.05.017CrossRefGoogle Scholar
  15. Fernández-Raga M, Fraile R, Keizer JJ, et al. (2010) The kinetic energy of rain measured with an optical disdrometer: an application to splash erosion. Atmospheric Research 96: 225–240. DOI: 10.1016/j.atmosres.2009.07.013CrossRefGoogle Scholar
  16. Fornis RL, Vermeulen HR, Nieuwenhuis JD (2005) Kinetic energy–rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies. Journal of Hydrology 300(1-4): 20–32. DOI:10.1016/j.jhydrol.2004.04.027CrossRefGoogle Scholar
  17. Fu Y, Li GL, Zheng TH, et al. (2016) Impact of raindrop characteristics on the selective detachment and transport of aggregate fragments in the Loess Plateau of China. Soil Science Society of America Journal 80: 1071–1077. DOI: 10.2136/sssaj2 016.03.0084CrossRefGoogle Scholar
  18. Fu Y, Li GL, Zheng TH, et al. (2017) Splash detachment and transport of loess aggregate fragments by raindrop action. Catena 150: 154–160. DOI: 10.1016/j.catena.2016.11.021CrossRefGoogle Scholar
  19. Gabet EJ, Dunne T (2003) Sediment detachment by rain power. Water Resources Research 39(1): 1002–1014. DOI:10.1029/2001WR000656CrossRefGoogle Scholar
  20. Ghadir H, Payne D (2006) The formation and characteristics of splash following raindrop impact on soil. European Journal of Soil Science 39(4): 563–575. DOI:10.1111/j.1365-2389.1988. tb01240.xCrossRefGoogle Scholar
  21. Hessel R, van den Bosch R, Vigiak O (2006) Evaluation of the LISEM soil erosion model in two catchments in the East African Highlands. Earth Surface Processes and Landforms 31(4): 469–486.DOI: 10.1002/esp.1280CrossRefGoogle Scholar
  22. Hudson N (1957) Erosion control research.Rhodesia Agricultural Journal 54: 297–323.Google Scholar
  23. Hudson N (1981) Soil Conservation (2nd Edition). Batsford, London and Cornell Univ. Press, Ithaca, New York, USA.Google Scholar
  24. Janeau JL, Bricquet JP, Planchon O, Valentin C (2003) Soil crusting and infiltration on steep slopes in northern Thailand.European Journal of Soil Science 54(3): 543–554. DOI: 10.1046/j.1365-2389.2003.00494.xGoogle Scholar
  25. Jayawardena NW, Rezaur RB (2000a) Drop size distributions and kinetic energy load of rainstorms in Hong Kong. Hydrological Processes 14(6): 1069–1082. DOI: 10.1002/(SICI)1099-1085(20000430)14:63.0.COCrossRefGoogle Scholar
  26. Jayawardena NW, Rezaur RB (2000b) Measuring drop size distribution and kinetic energy of rainfall using a force transducer. Hydrological Processes 14(1): 37–49. DOI: 10.1002/(SICI)1099-1085(200001)14:1<37:AID-HYP908>3.0.COCrossRefGoogle Scholar
  27. Kinnell PIA (1990) The mechanics of raindrop-reduced flow transport. Australian Journal of Soil Science 28(4): 497–516. DOI: 10.1071/SR9900497CrossRefGoogle Scholar
  28. Kinnell PIA (1973) The problem of assessing the erosive power of rainfall from meteorological observations. Soil Science Society of America Journal 37(4): 617–621. DOI: 10.2136/sssaj1973.03615995003700040039xCrossRefGoogle Scholar
  29. Kinnell PIA (1991) The effect of flow depth on sediment transport induced by raindrops impacting shallow flow. Transactions of American Society of Agricultural Engineers 34: 161–168.DOI: 10.13031/2013.31639CrossRefGoogle Scholar
  30. Kinnell PIA (1993a) Sediment transport by shallow flows impacted by pulsed artificial rainfall. Australian Journal of Soil Science 31(2): 199–207. DOI: 10.1071/SR9930199CrossRefGoogle Scholar
  31. Kinnell PIA (1993b) Sediment concentration resulting from flow depth/drop size interactions in shallow overland flow. Transactions of American Society of Agricultural Engineers 36: 1099–1103. DOI: 10.13031/2013.28440CrossRefGoogle Scholar
  32. Kinnell PIA (1993c) Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor. Australian Journal of Soil Research 31(3): 319–332.DOI: 10.1071/SR9930319CrossRefGoogle Scholar
  33. Kinnell PIA (2005a) Raindrop impact-induced erosion processes and prediction: A review. Hydrological Processes 19(14): 2815–2844. DOI: 10.1002/hyp.5788CrossRefGoogle Scholar
  34. Kinnell PIA (2005b) Sediment transport by medium to large drops impacting flows at subterminal velocity. Soil Science Society of America Journal 69(3): 902–905. DOI:10.2136/sssaj 2004.0273CrossRefGoogle Scholar
  35. Lal R (1976) Soil erosion on Alfisols in western Nigeria: III.Effects of rainfall characteristics.Geoderma 16(5): 389–401. DOI: 10.1016/0016-7061(76)90003-3Google Scholar
  36. Legout C, Leguedois S, Le Bissonnais Y, Issa OM (2005) Splash distance and size distributions for various soils. Geoderma 124(3-4): 279–292. DOI: 10.1016/j.geoderma.2004. 05.006CrossRefGoogle Scholar
  37. Lim YS, Kim JK, Kim JW, et al. (2015) Analysis of the relationship between the kinetic energy and intensity of rainfall in Daejeon, Korea. Quaternary International 384: 107–117. DOI:10.1016/j.quaint.2015.03.021CrossRefGoogle Scholar
  38. Liu BZ, Wu FQ (1997) Soil erosion. Shaanxi People Press, Xi?an, China. pp34–35. (In Chinese)Google Scholar
  39. Morgan RPC (2004) Soil Erosion and Conservation (Third edition). Wiley-Blackwell. ISBN: 978-1-4051-1781-4Google Scholar
  40. Parsons AJ, GadianAM (2000) Uncertainty in modeling the detachment of soil by rainfall. Earth Surface Processes and Landforms 25(7): 723–728. DOI: 10.1002/1096-9837(200007) 25:73.0.CO;2-xCrossRefGoogle Scholar
  41. Poesen J (1986) Surface sealing as influenced by slope angle and position of simulated stones in the top layer of loose sediments. Earth Surface Processes and Landforms 11(1): 1–10. DOI:10. 1002/esp.3290110103CrossRefGoogle Scholar
  42. Ribolzi O, Patin J, Bresson LM, et al. (2011) Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology 127(1-2): 53–63. DOI:10.1016/j.geomorph.2010.120004CrossRefGoogle Scholar
  43. Ribolzi O, Hermida M, Karambiri H, et al. (2006) Effects of aeolian processes on water infiltration in sandy Sahelian rangeland in Burkina Faso. Catena 67(3): 145–154. DOI: 10.1016/j.catena.2006.03.006CrossRefGoogle Scholar
  44. Rose C (1960) Soil detachment caused by rainfall. Soil Science 89(1): 28–35. DOI: 10.1097/00010694-196001000-00005CrossRefGoogle Scholar
  45. Salles C, Poesen J (2000) Rain properties controlling soil splash detachment. Hydrological Processes 14(2): 271–282. DOI: 10.1002/(SICI)1099-1085(20000215)14:2<271:AID-HYP925>3.0.CO;2-JCrossRefGoogle Scholar
  46. Salles C, Poesen J, Sempere-Torres D (2002) Kinetic energy of rain and its functional relationship with intensity. Journal Hydrology 257(1): 256–270.DOI: 10.1016/S0022-1694(01)00555-8CrossRefGoogle Scholar
  47. Salles C, Poeson J, Govers G (2000) Statistical and physical analysis of soil detachment by rainfall impact: Rain erosivity indices and threshold energy. Water Resource Research 36(9): 2721–2729. DOI:10.1029/2000WR900024CrossRefGoogle Scholar
  48. Poesen J, Savat J (1981) Detachment and transport of loose sediments by raindrop splash. Part I. The calculation of absolute data on detachability and transportability. Catena 8(1): 1–17.DOI:10.1016/S0341-8162(81)80002-1CrossRefGoogle Scholar
  49. Tokay A, Kruger A, Krajewski WF (2001) Comparison of drop size distribution measurements by impact and optical disdrometers. Journal of Applied Meteorology 40: 2083–2097. DOI: 10.1175/1520-0450(2001)040<2083:CODS DM>2.0.CO;2CrossRefGoogle Scholar
  50. Torri D, Sfalanga M, Chisci G (1987) Threshold conditions for incipient rilling. Catena 8(1): 97–105.Google Scholar
  51. Van Dijk AIJM, Bruijnzeel LA, Rosewell CJ (2002) Rainfall intensity-kinetic energy relationships: a critical literature appraisal. Journal Hydrology 261(1): 1–23. DOI: 10.1016/S0022-1694(02)00020-3CrossRefGoogle Scholar
  52. Wu PT, Zhou PH (1994) The Effects of raindrop splash on the sheet flow hydraulic friction factor. Journal of Soil Erosion and Soil and Water Conservation 8(2): 40–42. (In Chinese)Google Scholar
  53. Yan YC, Wu LH, Xin XP, et al. (2015) How rain-formed soil crust affects wind erosion in a semi-arid steppe in northern China. Geoderma 249-250:79–86. DOI:10.1016/j.geoderma. 2015.03.011CrossRefGoogle Scholar
  54. Yong RA, Wiersma JA (1973) The role of rainfall impact in soil detachment and transport. Water Resources Research 9(6): 1629–1636. DOI: 10.1029/WR009i006p01629CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Guang-lu Li
    • 1
    • 2
    Email author
  • Teng-hui Zheng
    • 1
  • Yu Fu
    • 1
  • Bai-qiao Li
    • 1
  • Teng Zhang
    • 1
  1. 1.College of Resource and EnvironmentNorthwest A & F UniversityYanglingChina
  2. 2.Key laboratory for Agricultural Resources and Environmental Rehabilitation on the Loess Plateau of Agriculture Ministry of ChinaYanglingChina

Personalised recommendations