Skip to main content
Log in

Experimental study on large wood filtration performance by herringbone water-sediment separation structure

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

A herringbone water-sediment separation structure (hereinafter referred to as “herringbone structure”) has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood (LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests. The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter (D) larger than ribbed beam opening width (a). The total filtration rate also exceeded 80% when the Fraud number (Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Fr max, total filtration rate would be decreased due to overflow. Beside flow condition, structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam (γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam (θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width (a) together with LW diameter (D) influenced the size segregation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbe TB, Montgomery DR (1996) Large LW jams, channel hydraulics and habitat formation in large rivers. Regulated Rivers: Research and Management 12(2–3): 201–221.

    Article  Google Scholar 

  • Abbe TB, Montgomery DR, Featherston K, et al. (1993) A process-based classification of woody debris in a fluvial network; preliminary analysis of the Queets River, Washington. EOS Transaction of the American Geophysical Union 74, p. 296.

    Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. Journal of computational physics 194(1): 363–393. DOI: 10.1016/j.jcp.2003.09.032

    Article  Google Scholar 

  • Arthur CP, Collin JA, Mark AJ (2000) Debris force on highway bridges. NCHRP report 445. National Academy Press, Washington DC, USA.

    Google Scholar 

  • Badoux A, Böckli M, Rickenmann D, et al. (2015) Large wood transported during the exceptional flood event of 24 July 2014 in the Emme catchment (Switzerland). In: Proceedings of the Wood in World Rivers Conference, Padova, Italy. pp 1–3.

    Google Scholar 

  • Baillie BR, Davies TR (2002) Influence of large driftwood on channel morphology in native forest and pine plantation streams in the Nelson region. New Zealand Journal of Marine and Freshwater Resources 36(4): 763–774. DOI: 10.1080/00288330.2002.9517129

    Article  Google Scholar 

  • Baillie BR, Cummins L, Kimberley MO (1999) Measuring woody debris in the small streams of New Zealand’s pine plantations. New Zealand Journal of Marine and Freshwater Resources, 33(1): 87–97. DOI: 10.1080/00288330.1999. 9516859

    Article  Google Scholar 

  • Beckman ND, Wohl E (2014a) Effects of forest stand age on the characteristics of log jams in mountainous forest streams. Earth Surface Processes and Landforms 39(11): 1421–1431. DOI: 10.1002/esp.3531

    Google Scholar 

  • Bertoldi W, Welber M, Mao L, et al. (2014) A flume experiment on wood storage and remobilization in braided river systems. Earth Surface Processes & Landforms 39(6): 804–813. DOI: 10.1002/esp.3537

    Article  Google Scholar 

  • Bradley JB, Richards DL, Bahner CD (2005) Debris control structures: Evaluation and countermeasures. In: WEST Consultants, Inc. Hydraulic Engineering Circular 9 (third edition), West Lafayette, Washington DC, USA. pp 130–162.

    Google Scholar 

  • Braudrick AC, Grant EG (2000) When do logs move in rivers. Water Resources Research 36: 571–583. DOI: 10.1029/1999WR900290

    Article  Google Scholar 

  • Braudrick AC, Grant EG (2001) Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology 41(4): 263–283. DOI: 10.1016/S0169-555X(01)00058-7

    Article  Google Scholar 

  • Braudrick CA, Grant GE, Ishikawa Y, et al. (1997) Dynamics of wood transport in streams: a flume experiment. Earth Surface Processes and Landforms 22(7): 669–683. DOI: 10.1002/(SICI)10969837(199707)22:7%3C669::AIDESP740%3E3.0.CO;2-L

    Article  Google Scholar 

  • Brooks AP, Brierley GJ, Millar RG (2003) The long-term control of vegetation and woody debris on channel and flood-plain evolution: insights from a paired catchment study in southeastern australia. Geomorphology 51(1): 7–29. DOI: 10.1016/S0169-555X(02)00323-9

    Article  Google Scholar 

  • Brummer CJ, Abbe TB, Sampson JR, et al. (2006) Influence of vertical channel change associated with wood accumulations on delineating channel Mmigration zones, Washington DC, USA. Geomorphology 80(3): 295–309. DOI: 10.1016/j. geomorph.2006.03.002

    Article  Google Scholar 

  • Chen XQ, Cui P, Wei FQ (2006) Study of control debris flow in high-covered vegetation region. Journal of Mountain Science 24(3): 333–339. DOI: 10.3969/j.issn.1008-2786.2006.03.011 (in Chinese).

    Google Scholar 

  • Christopher FH, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Analysis 22(3): 553–578. DOI: 10.1111/0272-4332.00039

    Article  Google Scholar 

  • Comiti F, Andreoli A, Lenzi, et al. (2006) Spatial density and characteristics of woody debris in five mountain rivers of the Dolomites (Italian Alps). Geomorphology 78(1–2): 44–63. DOI: 10.1016/j.geomorph.2006.01.021

    Article  Google Scholar 

  • Comiti F, Andreoli A, Mao L, et al. (2008) Wood storage in three mountain streams of the Southern Andes and its hydromorphological effects. Earth Surface Processes and Landforms 33(2): 244–263. DOI: 10.1002/esp.1541

    Article  Google Scholar 

  • Comiti F, Lucía A, Rickenmann D (2016) Large wood recruitment and transport during large floods: a review. Geomorphology 169: 23–29. DOI: 10.1016/j.geomorph.2016.06.016

    Article  Google Scholar 

  • Collins BD, Montgomery DR, Fetherston KL, et al. (2012) The floodplain large wood cycle hypothesis: a mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology s 139-140(4): 460–470. DOI: 10.1016/j.geomorph.2011.11.011

    Article  Google Scholar 

  • Curran JH, Wohl EE (2003) Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington. Geomorphology 51(1): 141–157. DOI: 10.1016/S0169-555X(02)00333-1

    Article  Google Scholar 

  • D’Agostino V, Degetto M, Righetti M (2000) Experimental investigation on open check dams for coarse woody debris control. Dynamics of water and sediments in mountain basins, Quaderni di Idronomia Montana 20(Bios, Cosenza): 201–212.

    Google Scholar 

  • Daniels MD, Rhoads BL (2004) Effect of large woody debris configuration on three-dimensional flow structure in two lowenergy meander beds at varying stages. Water Resources Research 40(11): 417–427. DOI: 10.1029/2004WR003181.

    Article  Google Scholar 

  • Dio Y, Minami N, Yamada T, et al. (2000) Experimental analysis of woody debris trapping by impermeable type sabo dam, filled with sediment-woody debris carried by debris flow. Journal of the Japan Society of Erosion Control Engineering 52(6): 49–55. DOI: 10.11475/sabo1973.52.6_49

    Google Scholar 

  • Gippel CJ (1995) Environmental hydraulics of large woody debris. Journal of Environmental Engineering 121(5): 388–395. DOI: 10.1061/(ASCE)0733-9372(1995)121:5(388)

    Article  Google Scholar 

  • Gurnell AM (2003) Wood storage and mobility. In: Gregory SV, et al (eds), The Ecology and Management of Wood in World Rivers. American Fisheries Society, Bethesda, USA. pp 75–91.

    Google Scholar 

  • Haehnel RB, Daly S F (2004) Maximum impact force of woody debris on floodplain structures. Journal of Hydraulic Engineering 130(2): 112–120. DOI: 10.1061/(ASCE)0733-9429(2004)130:2(112)

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, et al. (1986) Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15(C): 133–302. DOI: 10.1016/S0065-2504(03)34002-4

    Article  Google Scholar 

  • Holub M, Fuchs S (2009) Mitigating mountain hazards in Austria–legislation, risk transfer, and awareness building. Natural Hazards and Earth System Sciences 9(2): 523–537. DOI: 10.5194/nhess-9-523-2009

    Article  Google Scholar 

  • Iroumé A, Mao L, Ulloa H, et al. (2014) Large wood volume and longitudinal distribution in channel segments draining catchments with different land use, Chile. Open Journal of Modern Hydrology 04(2): 57–66. DOI: 10.4236/ojmh.2014.42005

    Article  Google Scholar 

  • Johnson PA, Sheeder SA (2011) Controlling debris at bridges. In: Simon A et al (eds). Stream Restoration in Dynamic Fluvial Systems, AGU, Washington, USA. Pp: 385–397. DOI: 10.1029/2010GM000975

    Google Scholar 

  • Kaitna R, Chiari M, Kerschbaumer M, et al. (2011) Physical and numerical modeling of a bed load deposition area for an Alpine torrent. Natural Hazards and Earth System Sciences & Discussions 11(6): 1589–1597. DOI: 10.5194/nhess-11-1589-2011

    Article  Google Scholar 

  • Katatani M, Yamada T (2006) Study on new type slit sabo dam development for reduction of slit blockade by drift woods. Sabo Gakkaishi 59(3): 23–31. DOI: 10.11475/sabo1973.59.3_23 (in Japanese)

    Google Scholar 

  • Lagasse PF, Zevenbergen LW, Spitz WJ, et al. (2012) Stream stability at highway structures (fourth edition). In: Ayres Associates, et al. (autors). Joint Transportation Research Program (FHWA-HIF-12-004HEC-20), Alexandria, USA. pp 1–328.

    Google Scholar 

  • Lienkaemper GW, Swanson FJ (1987) Dynamics of large woody debris in streams in old-growth Douglas-fir forests. Canadian Journal of Forest Research 17(2): 150–156. DOI: 10.1139/x87-027

    Article  Google Scholar 

  • Lyn D, Cooper T, Yi Y, et al. (2003) Debris accumulation at bridge crossings: laboratory and field studies. In: Purdue University, et al (authors). Joint Transportation Research Program (FHWA/IN/JTRP-2003/10), West Lafayette, and USA. pp 1–62. DOI: 10.5703/1288284313171

    Google Scholar 

  • Mazzorana B, Hübl J, Zischg A, et al. (2010) Modelling woody material transport and deposition in alpine rivers. Natural Hazards 56(2): 425–449. DOI: 10.1007/s11069-009-9492-y

    Article  Google Scholar 

  • Mazzorana B, Comiti F, Fuchs S (2013) A structured approach to enhance flood hazard assessment in mountain streams. Natural Hazards 67(3): 991–1009. DOI: 10.1007/s11069-011-9811-y

    Article  Google Scholar 

  • Montgomery DR, Collins BD, Buffington JM, et al. (2003) Geomorphic Effects of Wood in Rivers. In: Gregory SV, et al(eds). The Ecology and Management of Wood in World Rivers. American Fisheries Society, Bethesda, USA. pp 21–47.

    Google Scholar 

  • Nagayama S, Nakamura F, Kawaguchi Y, et al. (2012) Effects of configuration of instream wood on autumn and winter habitat use by fish in a large remeandering reach. Hydrobiologia 680(1): 159–170. DOI: 10.1007/s10750-011-0913-z

    Article  Google Scholar 

  • Nakagawa H, Takahashi T, Ikeguchi M (1993) Drift wood diffusion by overland flood flow. Doboku Gakkai Ronbunshuu B 37: 379–384 (In Japanese)

    Google Scholar 

  • Nakamura F, Swanson FJ (1994) Distribution of coarse woody debris in a mountain stream, western Cascade Range,Oregon. Canadian Journal of Forest Research 24(12): 2395–2403.

    Article  Google Scholar 

  • Pagliara S, Carnacina I (2011) Influence of large woody debris on sediment scour at bridge piers. International Journal of Sediment Research 26(2): 121–136. DOI: 10.1016/S1001-6279(11)60081-4

    Article  Google Scholar 

  • Piton G, Recking A (2015) Design of sediment traps with open check dams. II: Woody Debris. Journal of Hydraulic Engineering 04015046(2): 1–13. DOI: 10.1061/(ASCE)HY.19437900.0001049

    Google Scholar 

  • Rickenmann D (1997) Schwemmholz und Hochwasser. Wasser Energie Luft 89(5–6): 115–119. (In German)

    Google Scholar 

  • Rigon E, Comiti F, Lenzi MA (2012) Large wood storage in streams of the Eastern Italian Alps and the relevance of hill slope processes. Water Resources Research 48(1): 273–279. DOI: 10.1029/2010WR009854

    Article  Google Scholar 

  • Ruiz-Villanueva V, Bodoque JM, Díez-Herrero A, et al. (2013) Reconstruction of a flash flood with large wood transport and its Influence on hazard patterns in an ungauged mountain basin. Hydrological Processes 27(24): 3424–3437. DOI: 10.1002/hyp.9433.

    Article  Google Scholar 

  • Ruiz-Villanueva V, Piégay H, Gurnell A, et al. (2016) Recent advances quantifying the large wood dynamics in river basins: new methods, remaining challenges. Reviews of Geophysics 54(3): 611–652. DOI: 10.1002/2015RG000514

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, et al (2004) Sensitivity analysis in practice. Journal of the American Statistical Association, 101(473): 398–399. DOI: 10.1002/0470870958

    Google Scholar 

  • Schmocker L, Hager WH (2010) Drift accumulation at river bridges. In: Dittrich and Andreas (eds), River flow 2010: proceedings of the 5th International Conference on Fluvial Hydraulics, Bundesanst, Braunschweig, German. pp 978–973.

    Google Scholar 

  • Schmocker L, Weitbrecht V (2013) Driftwood: risk analysis and engineering measures. Journal of Hydraulic Engineering 139(7): 683–695. DOI: 10.1061/(ASCE)HY.1943-7900.0000728

    Article  Google Scholar 

  • Shields FD, Gippel CJ (1995). Prediction of effects of woody debris removal on flow resistance. Journal of Hydraulic Engineering 121(4): 341–354. DOI: 10.1061/(ASCE)0733-9429(1995)121

    Article  Google Scholar 

  • Shields FD, Morin N, Kuhnle RA, et al. (2001) Effects of large woody debris structures on stream hydraulics. American Society of Civil Engineers 2001(2001): 1–12.

    Google Scholar 

  • Shrestha BB, Nakagawa H, Kawaike K, et al. (2009) Numerical simulation on debris-flow with driftwood and its capturing due to jamming of driftwood on a grid dam. Annual Journal of Hydraulic Engineering 53: 169–174.

    Google Scholar 

  • Stofleth J, Shields FD, Fox GA (2008) Hyporheic and total hydraulic retention in small sand bed streams. Hydrologic Processes 22(12): 1885–1894.

    Article  Google Scholar 

  • Wehrmann H, Hübl J, Holzinger G (2006) Classification of dams in torrential watersheds. Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Universal Academy Press, Tokyo, pp 829–838.

    Google Scholar 

  • Welber M, Bertoldi W, Tubino M (2013) Wood dispersal in braided streams: results from physical modeling. Water Resources Research 49(11): 7388–7400. DOI: 10.1002/2013WR014046

    Article  Google Scholar 

  • Wilcox AC, Wohl E (2006) Flow resistance dynamics in steppool stream channels: 1. large woody debris and controls on total resistance, Water Resources Research 42(5): 1–16. DOI: 10.1029/2005WR004277

    Google Scholar 

  • Wohl E (2011) Threshold-induced complex behavior of wood in mountain streams. Geology 39(6): 587–590. DOI: 10.1130/G32105.1

    Article  Google Scholar 

  • Wohl E, Bledsoe BP, Fausch KD, et al. (2016) Management of large wood in streams: an overview and proposed framework for hazard evaluation. Jawra Journal of the American Water Resources Association 52(2): 315–335. DOI: 10.1111/1752-1688.12388

    Article  Google Scholar 

  • Xie T, Yang HJ, Wei FQ, et al. (2014) A new water-sediment separation structure for debris flow defense and its model test. Bulletin of Engineering Geology and Environment 73(4): 947–958. DOI: 10.1007/s10064-014-0585-9

    Article  Google Scholar 

  • Xie XP, Wei FQ, Xie T, et al. (2014) Experiment on the clogging and deposition of woody debris flowing with torrents in front of debris dams. Mountain Research 32(2): 249–254. DOI: 10.3969/j.issn.1008-2786.2014.02.016 (In Chinese)

    Google Scholar 

  • Xie T, Wei FQ, Yang HJ, et al. (2016) Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense. Bulletin of Engineering Geology and the Environment 75(1): 101–108. DOI: 10.1007/s10064-015-0726-9

    Article  Google Scholar 

  • Xie T, Wei FQ, Yang HJ, et al. (2015) Optimal value of structural parameters in a new water-sediment separation structure for debris flow defense, Mountain research 33(1): 116–122. DOI: 10.1608/j.cnki.1008-2786.000016 (In Chinese)

    Google Scholar 

  • Young WJ (1991) Flume study of the hydraulic effects of large woody debris in lowland rivers. Research and Management 6(3): 203–211. DOI: 10.1002/rrr.3450060305

    Google Scholar 

  • Young MK (2011) Movement and characteristics of streamborne coarse woody debris in adjacent burned and undisturbed watersheds in wyoming. Canadian Journal of Forest Research 24(9): 1933–1938. DOI: 10.1139/x94-24

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science and Technology Support Program (2011BAK12B00) and the International Cooperation Project of the Department of Science and Technology of Sichuan Province (Grant No. 2009HH0005). The authors thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-qiang Wei.

Additional information

http://orcid.org/0000-0001-6688-5305

http://orcid.org/0000-0001-8734-0881

http://orcid.org/0000-0003-0635-6764

http://orcid.org/0000-0001-8468-2026

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Xp., Wei, Fq., Yang, Hj. et al. Experimental study on large wood filtration performance by herringbone water-sediment separation structure. J. Mt. Sci. 14, 269–281 (2017). https://doi.org/10.1007/s11629-016-3922-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-3922-6

Keywords

Navigation