Skip to main content
Log in

Rangeland degradation assessment in Kyrgyzstan: vegetation and soils as indicators of grazing pressure in Naryn Oblast

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Rangelands occupy more than 80% of the agricultural land in Kyrgyzstan. At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people’s livelihoods, rangeland degradation presents a threat for the majority of the population. We present for the first time an ecological assessment of different pasture types in a remote area of the Naryn Oblast, using vegetation and soils as indicators of rangeland conditions. We analysed the current degree of utilization (grazing pressure), the amount of biomass, soil samples, and vegetation data, using cluster analysis as well as ordination techniques. Winter pastures (kyshtoo) are characterized by higher pH values (average of 7.27) and lower organic matter contents (average of 12.83%) compared to summer pastures (dzailoo) with average pH values of 6.03 and average organic matter contents of 21.05%. Additionally, summer pastures show higher above-ground biomass, and higher species richness and diversity. Our results support the hypothesis that winter pastures, which are located near settlements, suffer from over-utilisation, while the more distant summer pastures are subjected to much lower grazing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal CC, Reddy CK (2013) Data Clustering-Algorithms and Applications. CRC Press, New York, USA. p. 622.

    Google Scholar 

  • Alkemade R, Reid RS, van den Berg M, et al. (2013) Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proceedings of the National Academy of Sciences of the United States of America 110(52): 20900–20905. DOI: 10.1073/pnas.1011013108

    Article  Google Scholar 

  • Baibagushev E (2011) Recent changes in pastoral systems: Case study on Kyrgyzstan. In: Kreutzmann H, Abdulalishoev K, Zhaohui L, Richter J (eds.). Pastoralism and Rangeland Management in Mountain Areas in the Context of Climate and Global Change, Bonn, pp 102–118

    Google Scholar 

  • Blank M (2007) Rückkehr zur subsistenzorientierten Viehhaltung als Existenzsicherungsstrategie. Berlin Geographical Papers Vol 34. p 54 (In German)

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York. p. 306

    Book  Google Scholar 

  • Borchardt P, Oldeland J, Ponsens J, et al. (2013) Plant functional traits match grazing gradient and vegetation patterns on mountain pastures in SW Kyrgyzstan. Phytocoenologia 43(3): 171–181. DOI: 10.1127/0340-269X/2013/0043-0542

    Article  Google Scholar 

  • Borchardt P, Schickhoff U, Scheitweiler S, et al. (2011) Mountain pastures and grasslands in the SW Tien Shan, Kyrgyzstan -Floristic patterns, environmental gradients, phytogeography, and grazing impact. Journal of Mountain Science 8(3): 363–373. DOI: 10.1007/s11629-011-2121-8

    Article  Google Scholar 

  • Borchardt P, Schmidt M, Schickhoff U (2010) Vegetation patterns in Kyrgyzstan's walnut-fruit forests under the impact of changing forest use in post-soviet transformation. Die Erde 141(3): 255–275.

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Springer Berlin Heidelberg, Berlin, Heidelberg. p 866. (In German)

    Google Scholar 

  • Britton AJ, Pearce IS, Jones B (2005) Impacts of grazing on montane heath vegetation in Wales and implications for the restoration of montane areas. Biological Conservation 125(4): 515–524. DOI: 10.1016/j.biocon.2005.04.014

    Article  Google Scholar 

  • Carter MR, Gregorich EG (2008) Soil Sampling and Methods of Analysis. 2nd ed. Canadian Society of Soil Science; CRC Press, Boca Raton, FL. p 1224.

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335): 1302–1310.

    Article  Google Scholar 

  • Cowan PJ (2007) Geographic usage of the terms Middle Asia and Central Asia. Journal of Arid Environments 69(2): 359–363. DOI: 10.1016/j.jaridenv.2006.09.013

    Article  Google Scholar 

  • Crewett W (2012) Improving the Sustainability of Pasture Use in Kyrgyzstan. Mountain Research and Development 32(3): 267–274. DOI: 10.1659/MRD-JOURNAL-D-11-00128.1

    Article  Google Scholar 

  • Cui X, Wang Y, Niu H, et al. (2005) Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research 20(5): 519–527. DOI: 10.1007/s11284-005-0063-8

    Article  Google Scholar 

  • Czerepanov SK (1995) Vascular Plants of Russia and Adjacent States (the former USSR). Cambridge University Press, Cambridge. p 516.

    Google Scholar 

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12): 3566–3574. DOI: 10.1890/08-1823.1

    Article  Google Scholar 

  • De Cáceres M, Font X, Vicente P, et al. (2009) Numerical reproduction of traditional classifications and automatic vegetation identification. Journal of Vegetation Science 20(4): 620–628.

    Article  Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie. E. Ulmer, Stuttgart (Hohenheim). p 683. (In German)

    Google Scholar 

  • Diniz-Filho, José Alexandre F, Soares TN, et al. (2013) Mantel test in population genetics. Genetics and molecular biology 36(4): 475–485. DOI: 10.1590/S1415-47572013000400002

    Article  Google Scholar 

  • Dörre A (2012) Legal arrangements and pasture-related socio-ecological challenges in Kyrgyzstan. In: Kreutzmann H (eds.). Pastoral practices in High Asia. Dordrecht. Springer Netherlands. pp. 127–144. DOI: 10.1007/978-94-007-3846-1_7

  • Dörre A, Borchardt P (2012) Changing systems, changing effects -Pasture utilization in the Post-Soviet Transition. Mountain Research and Development 32(3): 313–323. DOI: 10.1659/MRD-JOURNAL-D-11-00132.1

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological monographs 67(3): 345–366

    Google Scholar 

  • Eisenman SW, Zaurov DE, Struwe L (2013) Medicinal Plants of Central Asia. Springer, New York. p 347.

    Book  Google Scholar 

  • Ellis JE, Swift DM (1988) Stability of African pastoral ecosystems: alternate paradigms and implications for development. Journal of Range Management Archives 41(6): 450–459.

    Article  Google Scholar 

  • Epple C (2001) A vegetation study in the walnut and fruit-tree forests of Southern Kyrgyzstan. Phytocoenologia 31(4): 571–604. DOI: 10.1127/phyto/31/2001/571

    Article  Google Scholar 

  • Esengulova N, Japarov A, Mamytbekov E (2008) Community Management of High-Alpine Grasslands in the Kyrgyz Republic: Social, Economic and Ecological Implications. Governing Shared Resources: Connecting Local Experience to Global Challenges, the Twelfth Biennial Conference of the International Association for the Study of Commons, Cheltenham, England. p 14.

    Google Scholar 

  • Farrington JD (2005) De-development in eastern Kyrgyzstan and persistence of semi-nomadic livestock herding. Nomadic Peoples 9(1): 171–197. DOI: 10.3167/082279405781826191

    Article  Google Scholar 

  • Fernandez-Gimenez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. Journal of Applied Ecology 36(6): 871–885. DOI: 10.1046/j.1365-2664.1999.00447.x

    Article  Google Scholar 

  • Gamoun M, Patton B, Hanchi B (2015) Assessment of vegetation response to grazing management in arid rangelands of southern Tunisia. International Journal of Biodiversity Science, Ecosystem Services & Management 11(2): 106–113. DOI: 10.1080/21513732.2014.998284

    Article  Google Scholar 

  • Gao YZ, Giese M, Han XG, et al. (2009) Land use and drought interactively affect interspecific competition and species diversity at the local scale in a semiarid steppe ecosystem. Ecological research 24(3): 627–635.

    Article  Google Scholar 

  • Glaser B, Turrion M, Solomon D, et al. (2000) Soil organic matter quantity and quality in mountain soils of the Alay Range, Kyrgyzia, affected by land use change. Biology and Fertility of Soils 31(5): 407–413.

    Article  Google Scholar 

  • Gottschling H (2006) Die Naturräume des Biosphärenreservates Issyk-Kul in Kirgisistan. Ernst-Moritz-Arndt-Univ., Greifswald. p 245. (In German)

    Google Scholar 

  • Gronau I, Moran S (2007) Optimal implementations of UPGMA and other common clustering algorithms. Information Processing Letters 104(6): 205–210. DOI: 10.1016/j.ipl.2007.07.002

    Article  Google Scholar 

  • Han G, Hao X, Zhao M, et al. (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystems & Environment 125(1-4): 21–32. DOI: 10.1016/j.agee.2007.11.009

    Article  Google Scholar 

  • Hart RH (2001) Plant biodiversity on shortgrass steppe after 55 years of zero, light, moderate, or heavy cattle grazing. Plant Ecology 155(1): 111–118. DOI: 10.1023/A: 1013273400543

    Article  Google Scholar 

  • Ibraimova A (2009) Legal and Institutional Framework for Empowerment of Rural Communities in the Kyrgyz Republic. Institute of Federalism; LIT-Verlag, Fribourg, Zürich. p 191.

    Google Scholar 

  • Imanberdieva N (2015) Flora and plant formations distributed in At-Bashy valleys-internal Tien Shan in Kyrgyzstan and interactions with climate. In: Öztürk MA, Hakeem KR, Faridah-Hanum I, Efe R (eds.). Climate Change Impacts on High-Altitude Ecosystems. Cham, Springer International Publishing. pp. 569–590.

    Google Scholar 

  • Jacquesson S (2010) Reforming pastoral land use in Kyrgyzstan: from clan and custom to self-government and tradition. Central Asian Survey 29(1): 103–118. DOI: 10.1080/02634931003765571

    Article  Google Scholar 

  • Johnson DL, Lewis LA (2007) Land Degradation. 2nd ed. Rowman & Littlefield, Lanham. pp 303.

    Google Scholar 

  • Kasymov U, Thiel A (2014) Who is benefiting from pasture reforms in Kyrgyzstan? Designing institutions in a post-socialist transformation process. Paper prepared for presentation at the Inaugural WINIR Conference. Greenwich, London, UK. p 28.

    Google Scholar 

  • Kent M (2012) Vegetation Description and Data Analysis. 2nd ed. John Wiley & Sons, Chichester, West Sussex, UK, Hoboken, NJ. p 414.

    Google Scholar 

  • Kissel DE, Sonon L, Vendrell PF, et al. (2009) Salt concentration and measurement of soil pH. Communications in Soil Science and Plant Analysis 40 (1-6): 179–187. DOI: 10.1080/00103620802625377

    Article  Google Scholar 

  • Körner C (2003) Alpine Plant Life. 2nd ed. Springer, Berlin, New York. p 344.

    Book  Google Scholar 

  • Körner C (1995) Alpine plant diversity: A global survey and functional interpretations. In: Lange, Mooney et al. (Hg.). Arctic and Alpine Biodiversity 30. Berlin, Heidelberg. pp 45–62. DOI: 10.1007/978-3-642-78966-3_4

    Google Scholar 

  • Kreutzmann H (2013) The tragedy of responsibility in high Asia: modernizing traditional pastoral practices and preserving modernist worldviews. Pastoralism: Research, Policy and Practice 3 (7): 1–11. DOI: 10.1186/2041-7136-3-7.

    Google Scholar 

  • Kreutzmann H (2012) Pastoral practices in transition: Animal husbandry in high Asian contexts. In: Kreutzmann H (eds.). Pastoral practices in High Asia. Springer, Dordrecht, New York. pp 1–29. DOI: 10.1007/978-94-007-3846-1

    Chapter  Google Scholar 

  • Kulikov M, Schickhoff U, Borchardt P (2016) Spatial and seasonal dynamics of soil loss ratio in mountain rangelands of south-western Kyrgyzstan. Journal of Mountain Science 13(3): 316–329. DOI: 10.1007/s11629-014-3393-6.

    Article  Google Scholar 

  • Laruelle M, Peyrouse S (2010) L'Asie Centrale à l'Aune de la Mondialisation. IRIS, Institut de relations internationales et stratégiques; A. Colin, Paris. p 223. (In French)

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical Ecology. 3rd English ed. Elsevier, Amsterdam, Boston. p 990.

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129(2): 271–280. DOI 10.1007/s004420100716

    Article  Google Scholar 

  • Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, Berlin, Heidelberg. p 224. (In German)

    Google Scholar 

  • Liechti K (2012) The meanings of pasture in resource degradation negotiations: Evidence from Post-Socialist rural Kyrgyzstan. Mountain Research and Development 32(3): 304–312. DOI: 10.1659/MRD-JOURNAL-D-11-00113.1

    Article  Google Scholar 

  • Loewenstein Y, Portugaly E, Fromer M, et al. (2008) Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space. Bioinformatics (Oxford, England) 13: 41–49. DOI: 10.1093/bioinformatics/btn174

    Article  Google Scholar 

  • Ludi E (2003) Sustainable pasture management in Kyrgyzstan and Tajikistan: development needs and recommendations. Mountain Research and Development 23(2): 119–123. DOI: 10.1659/02764741(2003)023[0119: SPMIKA]2.0.CO;2

    Article  Google Scholar 

  • Ma Y, Staub JE, Robbins MD, et al. (2014) Phenotypic and genetic characterization of Kyrgyz fine-leaved Festuca valesiaca germplasm for use in semi-arid, low-maintenance turf applications. Genetic resources and crop evolution 61(1): 185–197.

    Article  Google Scholar 

  • Magurran AE (2004) Measuring Biological Diversity. Blackwell Pub., Malden, Ma. p 256.

    Google Scholar 

  • Mark AF, Whigham PA (2011) Disturbance-induced changes in a high-alpine cushionfield community, south-central New Zealand. Austral Ecology 36(5): 581–592. DOI: 10.1111/j.1442-9993.2010.02193.x

    Article  Google Scholar 

  • McGarigal K, Cushman S, Stafford SG (2000) Multivariate Statistics for Wildlife and Ecology Research. Springer, New York, USA. p 283.

    Book  Google Scholar 

  • Oden NL, Sokal RR (1986) Directional autocorrelation: An extension of spatial correlograms to two dimensions. Systematic Zoology 35(4): 608–617. DOI: 10.2307/2413120

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, et al. (2016) Package ‘vegan’. Community ecology package. p 285.

    Google Scholar 

  • Oksanen J (2013) Multivariate Analysis of Ecological Communities in R: vegan tutorial. R package version 1.7. University of Oulu. p 43.

    Google Scholar 

  • Oldeland J, Dorigo W, Lieckfeld L, et al. (2010) Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Remote Sensing of Environment 114(6): 1155–1166. DOI: 10.1016/j.rse.2010.01.003

    Article  Google Scholar 

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution 13(7): 261–265. DOI: 10.1016/S0169-5347(98)01364-0

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters 8(2): 224–239. DOI: 10.1111/j.1461-0248.2004.00701.x

    Article  Google Scholar 

  • Rahim IU, Maselli D (eds.) (2011) Herders Manual. University of Central Asia; NCCR-NS, Bishkek. p 124.

    Google Scholar 

  • Reid RS, Galvin KA, Kruska RS (2008) Global significance of extensive grazing lands and pastoral societies: an introduction. In: Galvin, K.A., Reid, R.S., Behnke, Jr., R.H., Hobbs, N.T. (eds.). Fragmentation in Semi-Arid and Arid Landscapes-Consequences for Human and Natural Landscapes, Springer, pp 1–24.

    Chapter  Google Scholar 

  • Richter M (2000) A hypothetical framework for testing phytodiversity in mountainous regions: the influence of airstreams and hygrothermic conditions. Phytocoenologia (30): 519–542.

    Article  Google Scholar 

  • Roser L, Vilardi J, Saidman B, et al. (2015) Package 'EcoGenetics'. EcoGenetics: Spatial Analysis of Phenotypic, Genotypic and Environmental Data, Version 1.2.0-2. p 91.

    Google Scholar 

  • Ruppert JC, Holm A, Miehe S, et al. (2012) Meta-analysis of ANPP and rain-use efficiency confirms indicative value for degradation and supports non-linear response along precipitation gradients in drylands. Journal of Vegetation Science 23(6): 1035–1050. DOI: 10.1111/j.1654-1103.2012.01420.x

    Article  Google Scholar 

  • Sakbaeva Z, Acosta-Martínez V, Moore-Kucera J, et al. (2012) Interactions of soil order and land use management on soil properties in the Kukart watershed, Kyrgyzstan. Applied and Environmental Soil Science 1: 1–11. DOI: 10.1155/2012/130941

    Article  Google Scholar 

  • Sanaullah M, Chabbi A, Girardin C, et al. (2014) Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant and soil 374(1-2): 767–778. DOI: 10.1007/s11104-013-1890-y

    Article  Google Scholar 

  • Saraçli S, Dogan N, Dogan I (2013) Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications 1: 203. DOI: 10.1186/1029-242X-2013-203

    Article  Google Scholar 

  • Schmidt M (2013) Mensch und Umwelt in Kirgistan. Erdkundliches Wissen 153 Steiner, Stuttgart. p. 400. (In German)

    Google Scholar 

  • Schoch N, Steimann B, Thieme S (2010) Migration and animal husbandry: Competing or complementary livelihood strategies. Evidence from Kyrgyzstan. Natural Resources Forum 34(3): 211–221. DOI: 10.1111/j.1477-8947.2010.01306.x

    Article  Google Scholar 

  • Shannon CE, Weaver W (1964) The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA. p 125.

    Google Scholar 

  • Sheehy DP, Miller D, Johnson DA (2006) Transformation of traditional pastoral livestock systems on the Tibetan steppe. Sécheresse 17(1): 142–151.

    Google Scholar 

  • Shigaeva J, Wolfgramm B, Dear C (2013) Sustainable Land Management in Kyrgyzstan and Tajikistan: A Research Review. Mountain Societies Research Institute, University of Central Asia. p 92.

    Google Scholar 

  • Shigaeva J, Kollmair M, Niederer P, et al. (2007) Livelihoods in transition: changing land use strategies and ecological implications in a post-Soviet setting (Kyrgyzstan). Central Asian Survey 26(3): 389–406. DOI: 10.1080/02634930701702696

    Article  Google Scholar 

  • Silcock JL, Fensham RJ (2013) Arid vegetation in disequilibrium with livestock grazing: Evidence from long-term exclosures. Austral Ecology 38(1): 57–65. DOI: 10.1111/j.1442-9993.2012.02374.x

    Article  Google Scholar 

  • Sokal RR, Rohlf, FT (1962) The comparison of dendrograms by objective methods. Taxon 11(2): 33–40.

    Article  Google Scholar 

  • Sommer R, Pauw E de (2011) Organic carbon in soils of Central Asia—status quo and potentials for sequestration. Plant and Soil 338(1-2): 273–288. DOI: 10.1007/s11104-010-0479-y

    Article  Google Scholar 

  • Stavi I, Ungar ED, Lavee H, et al. (2008) Grazing-induced spatial variability of soil bulk density and content of moisture, organic carbon and calcium carbonate in a semi-arid rangeland. CATENA 75(3): 288–296. DOI: 10.1016/j.catena.2008.07.007

    Article  Google Scholar 

  • Steimann B (2010) Making a Living in Uncertainty. Zurich Open Repository and Archive, Zürich. p 240.

    Google Scholar 

  • Su X, Wu Y, Dong S, et al. (2015) Effects of grassland degradation and re-vegetation on carbon and nitrogen storage in the soils of the Headwater Area Nature Reserve on the Qinghai-Tibetan Plateau, China. Journal of Mountain Science 12(3): 582–591. DOI: 10.1007/s11629-014-3043-z

    Article  Google Scholar 

  • Taft JB, Phillippe LR, Dietrich CH, et al. (2011) Grassland composition, structure, and diversity patterns along major environmental gradients in the Central Tien Shan. Plant Ecology 212(8): 1349–1361. DOI 10.1007/s11258-011-9911-5

    Article  Google Scholar 

  • Tang L, Dong S, Sherman R, et al. (2015) Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau. The Rangeland Journal 37(1): 107–115. DOI: 10.1071/RJ14077

    Article  Google Scholar 

  • Umralina AR, Lazkov GA (2008) Endemic and Rare Plant Species of Kyrgyzstan (Atlas). Biotechnology Institute, National Academy of Science Kyrgyz Republic, Bishkek. p. 164.

    Google Scholar 

  • Undeland A (2012) Herders' Manual. Mountain Research and Development 32(3): 380–381.

    Article  Google Scholar 

  • UCA, University of central Asia (2014) Quality of Life in Naryn Oblast, Bishkek. p 58.

    Google Scholar 

  • Vallentine JF (2001) Grazing Management. 2nd ed. Academic Press, San Diego. p 659.

    Google Scholar 

  • Van de Ven, Christopher M, Weiss SB, et al. (2007) Plant Species Distributions under Present Conditions and Forecasted for Warmer Climates in an Arid Mountain Range. Earth Interactions 11(9): 1–33. DOI: 10.1175/EI205.1

    Article  Google Scholar 

  • Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetation 39(2): 97–114. DOI: 10.1007/BF00052021

    Article  Google Scholar 

  • Van der Maarel E (2007) Transformation of cover-abundance values for appropriate numerical treatment-Alternatives to the proposals by Podani. Journal of Vegetation Science 18(5): 767–770.

    Google Scholar 

  • Vanselow KA (2011) The High-Mountain Pastures of the Eastern Pamirs (Tajikistan). PhD Thesis, Universität Erlangen-Nürnberg, Germany. p 226.

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. 4th ed. Springer, New York, USA. p 495.

    Book  Google Scholar 

  • Vetter S (2005) Rangelands at equilibrium and non-equilibrium: recent developments in the debate. Journal of Arid Environments 62(2): 321–341. DOI: 10.1016/j.jaridenv.2004.11.015

    Article  Google Scholar 

  • Wagner V (2009) Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. Journal of Vegetation Science 20(2): 199–208. DOI: 10.1111/j.1654-1103.2009.01032.x

    Article  Google Scholar 

  • Wehrden H von, Hanspach J, Kaczensky P, et al. (2012) Global assessment of the non-equilibrium concept in rangelands. Ecological Applications 22(2): 393–399. DOI: 10.1890/11-0802.1

    Article  Google Scholar 

  • Wehrden H von, Wesche K (2007) Relationships between climate, productivity and vegetation in southern Mongolian drylands. Basic and applied dryland research 1(2): 100. DOI: 10.1127/badr/1/2007/100

    Article  Google Scholar 

  • Wesche K, Treiber J (2012) Abiotic and biotic determinants of steppe productivity and performance-A view from Central Asia. In: Werger, Marinus JA; van Staalduinen, Marja A (eds.). Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World, Springer Netherlands. pp 3–45.

    Chapter  Google Scholar 

  • Wildi O (1989) A new numerical solution to traditional phytosociological tabular classification. Numerical syntaxonomy 81(1-2): 95–106. DOI: 10.1007/BF00045515

    Article  Google Scholar 

  • World Bank (2014) Environmental and Social Management Plan. Vol. 1 of Kyrgyz Republic. E4534. p 105.

    Google Scholar 

  • World Bank (2007) Kyrgyz Republic-Livestock Sector Review, Washington, DC. p 118.

    Google Scholar 

  • Wu R, Tiessen H, Chen Z (2008) The impacts of pasture degradation on soil nutrients and plant compositions in alpine grassland, China. Journal of Agricultural, Food, and Environmental Sciences 2(2): 1–14.

    Google Scholar 

  • Xiong D, Shi P, Sun Y, et al. (2014) Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in Alpine Meadows in northern Tibet, China. Chinese geographical science 24(4): 488–498. DOI: 10.1007/s11769-014-0697-y

    Article  Google Scholar 

  • Yan L, Zhou G, Zhang F (2013) Effects of different grazing intensities on grassland production in China: a meta-analysis. PloS one 8(12): e81466. p 9. DOI: 10.1371/journal.pone.0081466

    Article  Google Scholar 

  • Yang Y, Dong C, Yang S, et al. (2015) Physiological and proteomic adaptation of the alpine grass Stipa purpurea to a drought gradient. PloS one 10(2): 1–27. DOI: 10.1371/journal.pone.0117475

    Google Scholar 

  • Zhou N, Wu J, Shen Z, et al. (2016) Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau, China. Journal of Mountain Science 13(2): 265–275. DOI: 10.1007/s11629-014-3166-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Hoppe.

Additional information

http://orcid.org/0000-0003-3909-6735

http://orcid.org/0000-0001-6040-3758

http://orcid.org/0000-0002-6503-9761

http://orcid.org/0000-0003-1502-936X

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoppe, F., Zhusui Kyzy, T., Usupbaev, A. et al. Rangeland degradation assessment in Kyrgyzstan: vegetation and soils as indicators of grazing pressure in Naryn Oblast. J. Mt. Sci. 13, 1567–1583 (2016). https://doi.org/10.1007/s11629-016-3915-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-3915-5

Keywords

Navigation