Advertisement

Journal of Mountain Science

, Volume 13, Issue 9, pp 1567–1583 | Cite as

Rangeland degradation assessment in Kyrgyzstan: vegetation and soils as indicators of grazing pressure in Naryn Oblast

  • Franziska HoppeEmail author
  • Taalaigul Zhusui Kyzy
  • Adilet Usupbaev
  • Udo Schickhoff
Article

Abstract

Rangelands occupy more than 80% of the agricultural land in Kyrgyzstan. At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people’s livelihoods, rangeland degradation presents a threat for the majority of the population. We present for the first time an ecological assessment of different pasture types in a remote area of the Naryn Oblast, using vegetation and soils as indicators of rangeland conditions. We analysed the current degree of utilization (grazing pressure), the amount of biomass, soil samples, and vegetation data, using cluster analysis as well as ordination techniques. Winter pastures (kyshtoo) are characterized by higher pH values (average of 7.27) and lower organic matter contents (average of 12.83%) compared to summer pastures (dzailoo) with average pH values of 6.03 and average organic matter contents of 21.05%. Additionally, summer pastures show higher above-ground biomass, and higher species richness and diversity. Our results support the hypothesis that winter pastures, which are located near settlements, suffer from over-utilisation, while the more distant summer pastures are subjected to much lower grazing pressure.

Keywords

Alpine meadows Alpine steppes Animal husbandry Classification Grazing management Montane pastures Ordination Plant communities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11629_2016_3915_MOESM1_ESM.pdf (72 kb)
Supplementary material, approximately 71.7 KB.
11629_2016_3915_MOESM2_ESM.xlsx (49 kb)
Supplementary material, approximately 48.6 KB.

References

  1. Aggarwal CC, Reddy CK (2013) Data Clustering-Algorithms and Applications. CRC Press, New York, USA. p. 622.Google Scholar
  2. Alkemade R, Reid RS, van den Berg M, et al. (2013) Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proceedings of the National Academy of Sciences of the United States of America 110(52): 20900–20905. DOI: 10.1073/pnas.1011013108CrossRefGoogle Scholar
  3. Baibagushev E (2011) Recent changes in pastoral systems: Case study on Kyrgyzstan. In: Kreutzmann H, Abdulalishoev K, Zhaohui L, Richter J (eds.). Pastoralism and Rangeland Management in Mountain Areas in the Context of Climate and Global Change, Bonn, pp 102–118Google Scholar
  4. Blank M (2007) Rückkehr zur subsistenzorientierten Viehhaltung als Existenzsicherungsstrategie. Berlin Geographical Papers Vol 34. p 54 (In German)Google Scholar
  5. Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York. p. 306CrossRefGoogle Scholar
  6. Borchardt P, Oldeland J, Ponsens J, et al. (2013) Plant functional traits match grazing gradient and vegetation patterns on mountain pastures in SW Kyrgyzstan. Phytocoenologia 43(3): 171–181. DOI: 10.1127/0340-269X/2013/0043-0542CrossRefGoogle Scholar
  7. Borchardt P, Schickhoff U, Scheitweiler S, et al. (2011) Mountain pastures and grasslands in the SW Tien Shan, Kyrgyzstan -Floristic patterns, environmental gradients, phytogeography, and grazing impact. Journal of Mountain Science 8(3): 363–373. DOI: 10.1007/s11629-011-2121-8CrossRefGoogle Scholar
  8. Borchardt P, Schmidt M, Schickhoff U (2010) Vegetation patterns in Kyrgyzstan's walnut-fruit forests under the impact of changing forest use in post-soviet transformation. Die Erde 141(3): 255–275.Google Scholar
  9. Braun-Blanquet J (1964) Pflanzensoziologie. Springer Berlin Heidelberg, Berlin, Heidelberg. p 866. (In German)Google Scholar
  10. Britton AJ, Pearce IS, Jones B (2005) Impacts of grazing on montane heath vegetation in Wales and implications for the restoration of montane areas. Biological Conservation 125(4): 515–524. DOI: 10.1016/j.biocon.2005.04.014CrossRefGoogle Scholar
  11. Carter MR, Gregorich EG (2008) Soil Sampling and Methods of Analysis. 2nd ed. Canadian Society of Soil Science; CRC Press, Boca Raton, FL. p 1224.Google Scholar
  12. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335): 1302–1310.CrossRefGoogle Scholar
  13. Cowan PJ (2007) Geographic usage of the terms Middle Asia and Central Asia. Journal of Arid Environments 69(2): 359–363. DOI: 10.1016/j.jaridenv.2006.09.013CrossRefGoogle Scholar
  14. Crewett W (2012) Improving the Sustainability of Pasture Use in Kyrgyzstan. Mountain Research and Development 32(3): 267–274. DOI: 10.1659/MRD-JOURNAL-D-11-00128.1CrossRefGoogle Scholar
  15. Cui X, Wang Y, Niu H, et al. (2005) Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research 20(5): 519–527. DOI: 10.1007/s11284-005-0063-8CrossRefGoogle Scholar
  16. Czerepanov SK (1995) Vascular Plants of Russia and Adjacent States (the former USSR). Cambridge University Press, Cambridge. p 516.Google Scholar
  17. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12): 3566–3574. DOI: 10.1890/08-1823.1CrossRefGoogle Scholar
  18. De Cáceres M, Font X, Vicente P, et al. (2009) Numerical reproduction of traditional classifications and automatic vegetation identification. Journal of Vegetation Science 20(4): 620–628.CrossRefGoogle Scholar
  19. Dierschke H (1994) Pflanzensoziologie. E. Ulmer, Stuttgart (Hohenheim). p 683. (In German)Google Scholar
  20. Diniz-Filho, José Alexandre F, Soares TN, et al. (2013) Mantel test in population genetics. Genetics and molecular biology 36(4): 475–485. DOI: 10.1590/S1415-47572013000400002CrossRefGoogle Scholar
  21. Dörre A (2012) Legal arrangements and pasture-related socio-ecological challenges in Kyrgyzstan. In: Kreutzmann H (eds.). Pastoral practices in High Asia. Dordrecht. Springer Netherlands. pp. 127–144. DOI: 10.1007/978-94-007-3846-1_7Google Scholar
  22. Dörre A, Borchardt P (2012) Changing systems, changing effects -Pasture utilization in the Post-Soviet Transition. Mountain Research and Development 32(3): 313–323. DOI: 10.1659/MRD-JOURNAL-D-11-00132.1CrossRefGoogle Scholar
  23. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological monographs 67(3): 345–366Google Scholar
  24. Eisenman SW, Zaurov DE, Struwe L (2013) Medicinal Plants of Central Asia. Springer, New York. p 347.CrossRefGoogle Scholar
  25. Ellis JE, Swift DM (1988) Stability of African pastoral ecosystems: alternate paradigms and implications for development. Journal of Range Management Archives 41(6): 450–459.CrossRefGoogle Scholar
  26. Epple C (2001) A vegetation study in the walnut and fruit-tree forests of Southern Kyrgyzstan. Phytocoenologia 31(4): 571–604. DOI: 10.1127/phyto/31/2001/571CrossRefGoogle Scholar
  27. Esengulova N, Japarov A, Mamytbekov E (2008) Community Management of High-Alpine Grasslands in the Kyrgyz Republic: Social, Economic and Ecological Implications. Governing Shared Resources: Connecting Local Experience to Global Challenges, the Twelfth Biennial Conference of the International Association for the Study of Commons, Cheltenham, England. p 14.Google Scholar
  28. Farrington JD (2005) De-development in eastern Kyrgyzstan and persistence of semi-nomadic livestock herding. Nomadic Peoples 9(1): 171–197. DOI: 10.3167/082279405781826191CrossRefGoogle Scholar
  29. Fernandez-Gimenez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. Journal of Applied Ecology 36(6): 871–885. DOI: 10.1046/j.1365-2664.1999.00447.xCrossRefGoogle Scholar
  30. Gamoun M, Patton B, Hanchi B (2015) Assessment of vegetation response to grazing management in arid rangelands of southern Tunisia. International Journal of Biodiversity Science, Ecosystem Services & Management 11(2): 106–113. DOI: 10.1080/21513732.2014.998284CrossRefGoogle Scholar
  31. Gao YZ, Giese M, Han XG, et al. (2009) Land use and drought interactively affect interspecific competition and species diversity at the local scale in a semiarid steppe ecosystem. Ecological research 24(3): 627–635.CrossRefGoogle Scholar
  32. Glaser B, Turrion M, Solomon D, et al. (2000) Soil organic matter quantity and quality in mountain soils of the Alay Range, Kyrgyzia, affected by land use change. Biology and Fertility of Soils 31(5): 407–413.CrossRefGoogle Scholar
  33. Gottschling H (2006) Die Naturräume des Biosphärenreservates Issyk-Kul in Kirgisistan. Ernst-Moritz-Arndt-Univ., Greifswald. p 245. (In German)Google Scholar
  34. Gronau I, Moran S (2007) Optimal implementations of UPGMA and other common clustering algorithms. Information Processing Letters 104(6): 205–210. DOI: 10.1016/j.ipl.2007.07.002CrossRefGoogle Scholar
  35. Han G, Hao X, Zhao M, et al. (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystems & Environment 125(1-4): 21–32. DOI: 10.1016/j.agee.2007.11.009CrossRefGoogle Scholar
  36. Hart RH (2001) Plant biodiversity on shortgrass steppe after 55 years of zero, light, moderate, or heavy cattle grazing. Plant Ecology 155(1): 111–118. DOI: 10.1023/A: 1013273400543CrossRefGoogle Scholar
  37. Ibraimova A (2009) Legal and Institutional Framework for Empowerment of Rural Communities in the Kyrgyz Republic. Institute of Federalism; LIT-Verlag, Fribourg, Zürich. p 191.Google Scholar
  38. Imanberdieva N (2015) Flora and plant formations distributed in At-Bashy valleys-internal Tien Shan in Kyrgyzstan and interactions with climate. In: Öztürk MA, Hakeem KR, Faridah-Hanum I, Efe R (eds.). Climate Change Impacts on High-Altitude Ecosystems. Cham, Springer International Publishing. pp. 569–590.Google Scholar
  39. Jacquesson S (2010) Reforming pastoral land use in Kyrgyzstan: from clan and custom to self-government and tradition. Central Asian Survey 29(1): 103–118. DOI: 10.1080/02634931003765571CrossRefGoogle Scholar
  40. Johnson DL, Lewis LA (2007) Land Degradation. 2nd ed. Rowman & Littlefield, Lanham. pp 303.Google Scholar
  41. Kasymov U, Thiel A (2014) Who is benefiting from pasture reforms in Kyrgyzstan? Designing institutions in a post-socialist transformation process. Paper prepared for presentation at the Inaugural WINIR Conference. Greenwich, London, UK. p 28.Google Scholar
  42. Kent M (2012) Vegetation Description and Data Analysis. 2nd ed. John Wiley & Sons, Chichester, West Sussex, UK, Hoboken, NJ. p 414.Google Scholar
  43. Kissel DE, Sonon L, Vendrell PF, et al. (2009) Salt concentration and measurement of soil pH. Communications in Soil Science and Plant Analysis 40 (1-6): 179–187. DOI: 10.1080/00103620802625377CrossRefGoogle Scholar
  44. Körner C (2003) Alpine Plant Life. 2nd ed. Springer, Berlin, New York. p 344.CrossRefGoogle Scholar
  45. Körner C (1995) Alpine plant diversity: A global survey and functional interpretations. In: Lange, Mooney et al. (Hg.). Arctic and Alpine Biodiversity 30. Berlin, Heidelberg. pp 45–62. DOI: 10.1007/978-3-642-78966-3_4Google Scholar
  46. Kreutzmann H (2013) The tragedy of responsibility in high Asia: modernizing traditional pastoral practices and preserving modernist worldviews. Pastoralism: Research, Policy and Practice 3 (7): 1–11. DOI: 10.1186/2041-7136-3-7.Google Scholar
  47. Kreutzmann H (2012) Pastoral practices in transition: Animal husbandry in high Asian contexts. In: Kreutzmann H (eds.). Pastoral practices in High Asia. Springer, Dordrecht, New York. pp 1–29. DOI: 10.1007/978-94-007-3846-1CrossRefGoogle Scholar
  48. Kulikov M, Schickhoff U, Borchardt P (2016) Spatial and seasonal dynamics of soil loss ratio in mountain rangelands of south-western Kyrgyzstan. Journal of Mountain Science 13(3): 316–329. DOI: 10.1007/s11629-014-3393-6.CrossRefGoogle Scholar
  49. Laruelle M, Peyrouse S (2010) L'Asie Centrale à l'Aune de la Mondialisation. IRIS, Institut de relations internationales et stratégiques; A. Colin, Paris. p 223. (In French)Google Scholar
  50. Legendre P, Legendre L (2012) Numerical Ecology. 3rd English ed. Elsevier, Amsterdam, Boston. p 990.Google Scholar
  51. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129(2): 271–280. DOI 10.1007/s004420100716CrossRefGoogle Scholar
  52. Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, Berlin, Heidelberg. p 224. (In German)Google Scholar
  53. Liechti K (2012) The meanings of pasture in resource degradation negotiations: Evidence from Post-Socialist rural Kyrgyzstan. Mountain Research and Development 32(3): 304–312. DOI: 10.1659/MRD-JOURNAL-D-11-00113.1CrossRefGoogle Scholar
  54. Loewenstein Y, Portugaly E, Fromer M, et al. (2008) Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space. Bioinformatics (Oxford, England) 13: 41–49. DOI: 10.1093/bioinformatics/btn174CrossRefGoogle Scholar
  55. Ludi E (2003) Sustainable pasture management in Kyrgyzstan and Tajikistan: development needs and recommendations. Mountain Research and Development 23(2): 119–123. DOI: 10.1659/02764741(2003)023[0119: SPMIKA]2.0.CO;2CrossRefGoogle Scholar
  56. Ma Y, Staub JE, Robbins MD, et al. (2014) Phenotypic and genetic characterization of Kyrgyz fine-leaved Festuca valesiaca germplasm for use in semi-arid, low-maintenance turf applications. Genetic resources and crop evolution 61(1): 185–197.CrossRefGoogle Scholar
  57. Magurran AE (2004) Measuring Biological Diversity. Blackwell Pub., Malden, Ma. p 256.Google Scholar
  58. Mark AF, Whigham PA (2011) Disturbance-induced changes in a high-alpine cushionfield community, south-central New Zealand. Austral Ecology 36(5): 581–592. DOI: 10.1111/j.1442-9993.2010.02193.xCrossRefGoogle Scholar
  59. McGarigal K, Cushman S, Stafford SG (2000) Multivariate Statistics for Wildlife and Ecology Research. Springer, New York, USA. p 283.CrossRefGoogle Scholar
  60. Oden NL, Sokal RR (1986) Directional autocorrelation: An extension of spatial correlograms to two dimensions. Systematic Zoology 35(4): 608–617. DOI: 10.2307/2413120CrossRefGoogle Scholar
  61. Oksanen J, Blanchet FG, Kindt R, et al. (2016) Package ‘vegan’. Community ecology package. p 285.Google Scholar
  62. Oksanen J (2013) Multivariate Analysis of Ecological Communities in R: vegan tutorial. R package version 1.7. University of Oulu. p 43.Google Scholar
  63. Oldeland J, Dorigo W, Lieckfeld L, et al. (2010) Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Remote Sensing of Environment 114(6): 1155–1166. DOI: 10.1016/j.rse.2010.01.003CrossRefGoogle Scholar
  64. Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution 13(7): 261–265. DOI: 10.1016/S0169-5347(98)01364-0CrossRefGoogle Scholar
  65. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters 8(2): 224–239. DOI: 10.1111/j.1461-0248.2004.00701.xCrossRefGoogle Scholar
  66. Rahim IU, Maselli D (eds.) (2011) Herders Manual. University of Central Asia; NCCR-NS, Bishkek. p 124.Google Scholar
  67. Reid RS, Galvin KA, Kruska RS (2008) Global significance of extensive grazing lands and pastoral societies: an introduction. In: Galvin, K.A., Reid, R.S., Behnke, Jr., R.H., Hobbs, N.T. (eds.). Fragmentation in Semi-Arid and Arid Landscapes-Consequences for Human and Natural Landscapes, Springer, pp 1–24.CrossRefGoogle Scholar
  68. Richter M (2000) A hypothetical framework for testing phytodiversity in mountainous regions: the influence of airstreams and hygrothermic conditions. Phytocoenologia (30): 519–542.CrossRefGoogle Scholar
  69. Roser L, Vilardi J, Saidman B, et al. (2015) Package 'EcoGenetics'. EcoGenetics: Spatial Analysis of Phenotypic, Genotypic and Environmental Data, Version 1.2.0-2. p 91.Google Scholar
  70. Ruppert JC, Holm A, Miehe S, et al. (2012) Meta-analysis of ANPP and rain-use efficiency confirms indicative value for degradation and supports non-linear response along precipitation gradients in drylands. Journal of Vegetation Science 23(6): 1035–1050. DOI: 10.1111/j.1654-1103.2012.01420.xCrossRefGoogle Scholar
  71. Sakbaeva Z, Acosta-Martínez V, Moore-Kucera J, et al. (2012) Interactions of soil order and land use management on soil properties in the Kukart watershed, Kyrgyzstan. Applied and Environmental Soil Science 1: 1–11. DOI: 10.1155/2012/130941CrossRefGoogle Scholar
  72. Sanaullah M, Chabbi A, Girardin C, et al. (2014) Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant and soil 374(1-2): 767–778. DOI: 10.1007/s11104-013-1890-yCrossRefGoogle Scholar
  73. Saraçli S, Dogan N, Dogan I (2013) Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications 1: 203. DOI: 10.1186/1029-242X-2013-203CrossRefGoogle Scholar
  74. Schmidt M (2013) Mensch und Umwelt in Kirgistan. Erdkundliches Wissen 153 Steiner, Stuttgart. p. 400. (In German)Google Scholar
  75. Schoch N, Steimann B, Thieme S (2010) Migration and animal husbandry: Competing or complementary livelihood strategies. Evidence from Kyrgyzstan. Natural Resources Forum 34(3): 211–221. DOI: 10.1111/j.1477-8947.2010.01306.xCrossRefGoogle Scholar
  76. Shannon CE, Weaver W (1964) The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA. p 125.Google Scholar
  77. Sheehy DP, Miller D, Johnson DA (2006) Transformation of traditional pastoral livestock systems on the Tibetan steppe. Sécheresse 17(1): 142–151.Google Scholar
  78. Shigaeva J, Wolfgramm B, Dear C (2013) Sustainable Land Management in Kyrgyzstan and Tajikistan: A Research Review. Mountain Societies Research Institute, University of Central Asia. p 92.Google Scholar
  79. Shigaeva J, Kollmair M, Niederer P, et al. (2007) Livelihoods in transition: changing land use strategies and ecological implications in a post-Soviet setting (Kyrgyzstan). Central Asian Survey 26(3): 389–406. DOI: 10.1080/02634930701702696CrossRefGoogle Scholar
  80. Silcock JL, Fensham RJ (2013) Arid vegetation in disequilibrium with livestock grazing: Evidence from long-term exclosures. Austral Ecology 38(1): 57–65. DOI: 10.1111/j.1442-9993.2012.02374.xCrossRefGoogle Scholar
  81. Sokal RR, Rohlf, FT (1962) The comparison of dendrograms by objective methods. Taxon 11(2): 33–40.CrossRefGoogle Scholar
  82. Sommer R, Pauw E de (2011) Organic carbon in soils of Central Asia—status quo and potentials for sequestration. Plant and Soil 338(1-2): 273–288. DOI: 10.1007/s11104-010-0479-yCrossRefGoogle Scholar
  83. Stavi I, Ungar ED, Lavee H, et al. (2008) Grazing-induced spatial variability of soil bulk density and content of moisture, organic carbon and calcium carbonate in a semi-arid rangeland. CATENA 75(3): 288–296. DOI: 10.1016/j.catena.2008.07.007CrossRefGoogle Scholar
  84. Steimann B (2010) Making a Living in Uncertainty. Zurich Open Repository and Archive, Zürich. p 240.Google Scholar
  85. Su X, Wu Y, Dong S, et al. (2015) Effects of grassland degradation and re-vegetation on carbon and nitrogen storage in the soils of the Headwater Area Nature Reserve on the Qinghai-Tibetan Plateau, China. Journal of Mountain Science 12(3): 582–591. DOI: 10.1007/s11629-014-3043-zCrossRefGoogle Scholar
  86. Taft JB, Phillippe LR, Dietrich CH, et al. (2011) Grassland composition, structure, and diversity patterns along major environmental gradients in the Central Tien Shan. Plant Ecology 212(8): 1349–1361. DOI 10.1007/s11258-011-9911-5CrossRefGoogle Scholar
  87. Tang L, Dong S, Sherman R, et al. (2015) Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau. The Rangeland Journal 37(1): 107–115. DOI: 10.1071/RJ14077CrossRefGoogle Scholar
  88. Umralina AR, Lazkov GA (2008) Endemic and Rare Plant Species of Kyrgyzstan (Atlas). Biotechnology Institute, National Academy of Science Kyrgyz Republic, Bishkek. p. 164.Google Scholar
  89. Undeland A (2012) Herders' Manual. Mountain Research and Development 32(3): 380–381.CrossRefGoogle Scholar
  90. UCA, University of central Asia (2014) Quality of Life in Naryn Oblast, Bishkek. p 58.Google Scholar
  91. Vallentine JF (2001) Grazing Management. 2nd ed. Academic Press, San Diego. p 659.Google Scholar
  92. Van de Ven, Christopher M, Weiss SB, et al. (2007) Plant Species Distributions under Present Conditions and Forecasted for Warmer Climates in an Arid Mountain Range. Earth Interactions 11(9): 1–33. DOI: 10.1175/EI205.1CrossRefGoogle Scholar
  93. Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetation 39(2): 97–114. DOI: 10.1007/BF00052021CrossRefGoogle Scholar
  94. Van der Maarel E (2007) Transformation of cover-abundance values for appropriate numerical treatment-Alternatives to the proposals by Podani. Journal of Vegetation Science 18(5): 767–770.Google Scholar
  95. Vanselow KA (2011) The High-Mountain Pastures of the Eastern Pamirs (Tajikistan). PhD Thesis, Universität Erlangen-Nürnberg, Germany. p 226.Google Scholar
  96. Venables WN, Ripley BD (2002) Modern Applied Statistics with S. 4th ed. Springer, New York, USA. p 495.CrossRefGoogle Scholar
  97. Vetter S (2005) Rangelands at equilibrium and non-equilibrium: recent developments in the debate. Journal of Arid Environments 62(2): 321–341. DOI: 10.1016/j.jaridenv.2004.11.015CrossRefGoogle Scholar
  98. Wagner V (2009) Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. Journal of Vegetation Science 20(2): 199–208. DOI: 10.1111/j.1654-1103.2009.01032.xCrossRefGoogle Scholar
  99. Wehrden H von, Hanspach J, Kaczensky P, et al. (2012) Global assessment of the non-equilibrium concept in rangelands. Ecological Applications 22(2): 393–399. DOI: 10.1890/11-0802.1CrossRefGoogle Scholar
  100. Wehrden H von, Wesche K (2007) Relationships between climate, productivity and vegetation in southern Mongolian drylands. Basic and applied dryland research 1(2): 100. DOI: 10.1127/badr/1/2007/100CrossRefGoogle Scholar
  101. Wesche K, Treiber J (2012) Abiotic and biotic determinants of steppe productivity and performance-A view from Central Asia. In: Werger, Marinus JA; van Staalduinen, Marja A (eds.). Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World, Springer Netherlands. pp 3–45.CrossRefGoogle Scholar
  102. Wildi O (1989) A new numerical solution to traditional phytosociological tabular classification. Numerical syntaxonomy 81(1-2): 95–106. DOI: 10.1007/BF00045515CrossRefGoogle Scholar
  103. World Bank (2014) Environmental and Social Management Plan. Vol. 1 of Kyrgyz Republic. E4534. p 105.Google Scholar
  104. World Bank (2007) Kyrgyz Republic-Livestock Sector Review, Washington, DC. p 118.Google Scholar
  105. Wu R, Tiessen H, Chen Z (2008) The impacts of pasture degradation on soil nutrients and plant compositions in alpine grassland, China. Journal of Agricultural, Food, and Environmental Sciences 2(2): 1–14.Google Scholar
  106. Xiong D, Shi P, Sun Y, et al. (2014) Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in Alpine Meadows in northern Tibet, China. Chinese geographical science 24(4): 488–498. DOI: 10.1007/s11769-014-0697-yCrossRefGoogle Scholar
  107. Yan L, Zhou G, Zhang F (2013) Effects of different grazing intensities on grassland production in China: a meta-analysis. PloS one 8(12): e81466. p 9. DOI: 10.1371/journal.pone.0081466CrossRefGoogle Scholar
  108. Yang Y, Dong C, Yang S, et al. (2015) Physiological and proteomic adaptation of the alpine grass Stipa purpurea to a drought gradient. PloS one 10(2): 1–27. DOI: 10.1371/journal.pone.0117475Google Scholar
  109. Zhou N, Wu J, Shen Z, et al. (2016) Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau, China. Journal of Mountain Science 13(2): 265–275. DOI: 10.1007/s11629-014-3166-2CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Franziska Hoppe
    • 1
    Email author
  • Taalaigul Zhusui Kyzy
    • 2
  • Adilet Usupbaev
    • 2
  • Udo Schickhoff
    • 1
  1. 1.CEN Center for Earth System Research and SustainabilityInstitute of GeographyHamburgGermany
  2. 2.Laboratory of “Flora”, Institute for Biology and PedologyNational Academy of Sciences of the Kyrgyz RepublicBishkekKyrgyz Republic

Personalised recommendations