Journal of Mountain Science

, Volume 14, Issue 4, pp 694–704 | Cite as

Area-corrected species richness patterns of vascular plants along a tropical elevational gradient

  • Xiang Xu
  • Hua-yong Zhang
  • Jian Luo
  • Dong-jie Zhang
  • Athen Ma
Article

Abstract

The relationship between species richness and elevation is a hot issue in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE. These findings provide useful insights to adjust for the area effect and highligh t the need to use equalarea bands along the elevational gradient.

Keywords

Hainan Island Species-area relationship Mid-domain effect Vascular plant diversity Growth form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11629_2016_3894_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1297 KB.

References

  1. Alemdag S, Akgun A, Kaya A, et al. (2014) A large and rapid planar failure: causes, mechanism, and consequences (Mordut, Gumushane, Turkey). Arabian Journal of Geosciences 7 (3): 1205–1221. DOI: 10.1007/s12517-012-0821-1CrossRefGoogle Scholar
  2. Acharya BK, Chettri B, Vijayan L (2011) Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica 37: 329–336. DOI: 10.1016/j.actao. 2011. 03.005CrossRefGoogle Scholar
  3. Arrhenius O (1921) Species and area. Journal of Ecology 9 (1): 95–99. DOI: 10.2307/2255763CrossRefGoogle Scholar
  4. Bachman S, Baker WJ, Brummitt N, et al. (2004) Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27 (3): 299–310. DOI: 10.1111/j.0906-7590.2004.03759.xCrossRefGoogle Scholar
  5. Bhattarai KR, Maren IE, Subedi SC (2014) Biodiversity and invasibility: distribution patterns of invasive plant species in the Himalayas, Nepal. Journal of Mountain Science 11 (3): 688–696. DOI: 10.1007/s11629-013-2821-3CrossRefGoogle Scholar
  6. Bhattarai KR, Vetaas OR, Grytnes JA (2004) Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31 (3): 389–400. DOI: 10.1046/j.0305-0270.2003.01013.xCrossRefGoogle Scholar
  7. Carpenter C (2005) The environmental control of plant species density on a Himalayan elevation gradient. Journal of Biogeography 32 (6): 999–1018. DOI: 10.1111/j.1365-2699.2005.01249.xCrossRefGoogle Scholar
  8. Chen J, Ban YF, Li SN (2014) China: Open access to Earth landcover map. Nature 514: 434. DOI: 10.1038/514434cCrossRefGoogle Scholar
  9. Colwell RK (2008) RangeModel: tools for exploring and assessing geometric constraints on species richness (the middomain effect) along transects. Ecography 31 (1): 4–7. DOI: 10.1111/j.2008.0906-7590.05347.xCrossRefGoogle Scholar
  10. Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist 144 (4): 570–595. DOI: 10.1086/285695CrossRefGoogle Scholar
  11. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution 15 (2): 70–76. DOI: 10.1016/S0169-5347(99)01767-XCrossRefGoogle Scholar
  12. Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist 163(3): E1–E23. DOI: 10.1086/382056CrossRefGoogle Scholar
  13. Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. The American Naturalist 113: 791–833. DOI: 10.1086/283438CrossRefGoogle Scholar
  14. Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist 159 (3): 294–304. DOI: 10.1086/338542CrossRefGoogle Scholar
  15. Juo QF, Kelt DA, Sun ZY, et al. (2013) Global variation in elevational diversity patterns. Scientific Reports 3. DOI: 10.1038/srep03007Google Scholar
  16. Janzen DH (1967) Why mountain passes are higher in the tropics. The American Naturalist 101 (919): 233–249. DOI: 10.1086/282487CrossRefGoogle Scholar
  17. Karger DN, Kluge J, Krömer T, et al. (2011) The effect of area on local and regional elevational patterns of species richness. Journal of Biogeography 38 (6): 1177–1185. DOI: 10.1111/j.1365-2699.2010.02468.xCrossRefGoogle Scholar
  18. Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22 (11): 569–574. DOI: 10.1016/j.tree.2007.09.006CrossRefGoogle Scholar
  19. Lee CB, Chun JH (2016) Environmental drivers of patterns of plant diversity along a wide environmental gradient in Korean temperate forests. Forests 7 (1): 19. DOI: 10.3390/f7010019CrossRefGoogle Scholar
  20. Lee CB, Chun JH, Song HK, et al. (2013) Altitudinal patterns of plant species richness on the Baekdudaegan Mountains, South Korea: mid-domain effect, area, climate, and Rapoport’s rule. Ecological Research 28 (1): 67–79. DOI: 10.1007/s11284-012-1001-1CrossRefGoogle Scholar
  21. Malhi Y, Silman M, Salinas N, et al. (2010) Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology 16 (12): 3171–3175. DOI: 10.1111/j.1365-2486.2010.02323.xCrossRefGoogle Scholar
  22. Marini L, Bona E, Kunin WE, et al. (2011) Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. Journal of Biogeography 38 (1): 78–88. DOI: 10.1111/j.1365-2699.2010.02376.xCrossRefGoogle Scholar
  23. McCain CM (2007) Area and mammalian elevational diversity. Ecology 88 (1): 76–86. DOI: 10.1890/0012-9658(2007)88 [76:AAMED]2.0.CO;2CrossRefGoogle Scholar
  24. McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography 18 (3): 346–360. DOI: 10.1111/j.1466-8238.2008.00443.xCrossRefGoogle Scholar
  25. McCain CM (2010) Global analysis of reptile elevational diversity. Global Ecology and Biogeography 19 (4): 541–553. DOI: 10.1111/j.1466-8238.2010.00528.xGoogle Scholar
  26. Nascimbene J, Marini L (2015) Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. Journal of Biogeography 42 (7): 1222–1232. DOI: 10.1111/jbi.12493CrossRefGoogle Scholar
  27. Nogués-Bravo D, Rodríguez J, Hortal J, et al. (2008) Climate change, humans, and the extinction of the woolly mammoth. PLOS Biology 6 (4): 0685–0692. DOI: 10.1371/journal. pbio. 0060079CrossRefGoogle Scholar
  28. Pouteau R, Bayle É, Blanchard É, et al. (2015) Accounting for the indirect area effect in stacked species distribution models to map species richness in a montane biodiversity hotspot. Diversity and Distributions 21 (11): 1329–1338. DOI: 10.1111/ddi.12374CrossRefGoogle Scholar
  29. Pouteau R, Meyer JY, Blanchard P, et al. (2016) Fern species richness and abundance are indicators of climate change on high-elevation islands: evidence from an elevational gradient on Tahiti (French Polynesia). Climatic Change: 138(1-2): 143–156. DOI: 10.1007/s10584-016-1734-xCrossRefGoogle Scholar
  30. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18 (2): 200–205. DOI: 10.1111/j.1600-0587.1995.tb00341.xCrossRefGoogle Scholar
  31. Rahbek C (1997) The relationship among area, elevation, and regional species richness in Neotropical birds. The American Naturalist 149 (5): 875–902. DOI: 10.1086/286028CrossRefGoogle Scholar
  32. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters 8 (2): 224–239. DOI: 10.1111/j.1461-0248.2004.00701.x Journal of Biogeography 42 (10): 1964-1974. DOI: 10.1111/jbi.12554CrossRefGoogle Scholar
  33. Van Der Wal J, Murphy HT, Lovett-Doust J (2008) Threedimensional mid-domain predictions: geometric constraints in North American amphibian, bird, mammal and tree species richness patterns. Ecography 31 (4): 435–449. DOI: 10.1111/j.0906-7590.2008.05396.xCrossRefGoogle Scholar
  34. Wang ZH, Tang ZY, Fang JY (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions 13 (6): 845–854. DOI: 10.1111/j.1472-4642.2007.00335.xCrossRefGoogle Scholar
  35. Xing KQ, Kang MY, Wang Q, et al. (2011) Rarefaction approach to analyzing distribution patterns of species richness along altitudinal gradients: a case study with arborous species data. Biodiversity Science 19 (5): 581–588. (In Chinese) DOI: 10.3724/SP.J.1003.2011.08015CrossRefGoogle Scholar
  36. Xing FW, Zhou JS, Wang FG, et al. (2012) Inventory of plant species diversity of Hainan. Huazhong University of Science and Technology Press, Wuhan, China. (In Chinese)Google Scholar
  37. Zhu Y, Jiang Y, Liu QR, et al. (2009) Elevational trends of biodiversity and plant traits do not converge—a test in the Helan Range, NW China. Plant Ecology 205 (2): 273–283. DOI: 10.1007/s11258-009-9616-1CrossRefGoogle Scholar
  38. Zhu Y, Jiang Y, Liu QR, et al. (2007) Altitudinal pattern of vascular plant species richness based on equal-area belts in Mt. Helan. Biodiversity Science 15 (4): 408–418. (In Chinese) DOI: 10.1360/biodiv.060307CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiang Xu
    • 1
    • 2
  • Hua-yong Zhang
    • 1
  • Jian Luo
    • 1
  • Dong-jie Zhang
    • 1
  • Athen Ma
    • 2
  1. 1.North China Electric Power UniversityResearch Center for Engineering Ecology and Nonlinear ScienceBeijingChina
  2. 2.Queen Mary University of LondonSchool of Electronic Engineering and Computer ScienceLondonUK

Personalised recommendations