Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal

Abstract

Predicting the potential distribution of medicinal plants in response to climate change is essential for their conservation and management. Contributing to the management program, this study aimed to predict the distribution of two threatened medicinal plants, Fritillaria cirrhosa and Lilium nepalense. The location of focal species gathered from herbarium specimen housed in different herbaria and online databases were geo-referenced and checked for spatial autocorrelation. The predictive environmental variables were selected, and MaxEnt software was used to model the current and future distributions of focal species. Four Representative Concentration Pathway (RCP) trajectories of the BCC-CSM1.1 model were used as the future (2050) projection layer. The MaxEnt modelling delineated the potential distribution of F. cirrhosa and L. nepalense. The current suitability is projected towards Central and Eastern Hilly/Mountainous regions. Both species gain maximum suitability in RCP 4.5 which decline towards other trajectories for L. nepalense. Overall, both the focal species shift towards the north-west, losing their potential habitat in hilly and lower mountainous regions by 2050 across all trajectories. Our results highlight the impact of future climate change on two threatened and valuable species. The results can be further useful to initiate farming of these medicinally and economically important species based on climatically suitable zone and for designing a germplasm conservation strategy.

This is a preview of subscription content, access via your institution.

References

  1. Cardillo M, Mace GM, Gittleman JL, et al. (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proceedings of the Royal Society B: Biological Sciences 275(1641): 1441–1448. DOI: 10.1098/rspb.2008.0179

    Article  Google Scholar 

  2. Chetri M, Chapagain NR, Neupane VD (2006) Flowers of Mustang: a pictorial guidebook. National Trust for Nature Conservation, Annapurna Conservation Area Project, Upper Mustang Biodiversity Conservation project, Kathmandu, Nepal.

    Google Scholar 

  3. CSMD (Climate System Modeling Division) (2005) An introduction to the first general operational climate model at the National Climate Center. Advances in Climate System Modeling, 1, National Climate Center, China Meteorological Administration. p 14.

    Google Scholar 

  4. Davies TJ, Purvis A, Gittleman JL (2009) Quaternary climate change and the geographic ranges of mammals. The American Naturalist 174(3): 297–307. DOI: 10.1086/603614

    Article  Google Scholar 

  5. Elith J, Phillips SJ, Hastie T, et al. (2011) A statistical explanation of MaxEnt for ecologist. Diversity and Distributions 17: 43–57. DOI: 10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  6. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24(1): 38–49. DOI: 10.1017/S0376892997000088

    Article  Google Scholar 

  7. Franklin J (2010) Mapping species distributions-spatial inference and prediction, ecology. Biodiversity and conservation, Cambridge University Press, Cambridge.

    Google Scholar 

  8. Ghimire SK, Sapkota IB, Oli BR, et al. (2008) Non-timber forest products of Nepal Himalaya: Database of Some Important Species Found in the Mountain Protected Areas and Surrounding Regions. WWF Nepal, Kathmandu, Nepal

    Google Scholar 

  9. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8(9): 993–1009. DOI: 10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  10. Hijman RJ, Cameron SE, Parra JL, et al. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 1965–1978. DOI:10.1002/joc.1276

    Article  Google Scholar 

  11. Hirzel AH, Posse B, Oggier P, et al. (2004) Ecological requirements of reintroduced species and the implications for release policy: The case of the bearded vulture. Journal of Applied Ecology 41(6): 1103–1116. DOI: 10.1111/j.0021-8901. 2004.00980.x

    Article  Google Scholar 

  12. IPCC (2014) Summary for Policymakers, In: Field CB et al. (eds.), Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  13. IUCN (2001) The IUCN Red List of threatened species: Categories and criteria (version 3.1). Kathmandu, Nepal. (Available online at: http://www.iucnredlist.org/info.categories criteria2001, accessed on 2015-11-04)

    Google Scholar 

  14. Joshi B, Pant SC (2012) Ethnobotanical study of some common plants used among the tribal communities of Kashipur, Uttarakhand. Indian Journal of Natural Products and Resources 3(2): 262–266.

    Google Scholar 

  15. Joshi KK, Joshi SD (2001) Genetic heritage of medicinal and aromatic plants of Nepal Himalayas. Buddha Academic Publishers and Distributors Pvt. Ltd., Kathmandu, Nepal.

    Google Scholar 

  16. Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation 21(5): 1251–1266. DOI: 10.1007/s10531-012-0279-1

    Article  Google Scholar 

  17. Kumar S, Stohlgren TJ (2009) MaxEnt modelling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment 1(4): 94–98.

    Google Scholar 

  18. Landis JR, Koch GG (1997) The measurement of observer for categorical data. Biometrics 33(1): 159–174. DOI: 10.2307/2529310

    Article  Google Scholar 

  19. Lenoir J, Svenning JC (2015) Climate-related range shifts-a global multidimension synthesis and new research directions. Ecography 38(1): 15–28. DOI: 10.1111/ecog.00967

    Article  Google Scholar 

  20. Liu CR, Berry PM, Dawson TP, et al. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28(3): 385–393. DOI: 10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  21. Lozier JD, Aniello P, Hickerson MJ (2009) Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling. Journal of Biogeography 36(9): 1623–1627. DOI:10.1111/j.1365-2699.2009.02152.x

    Article  Google Scholar 

  22. Martinez-Meyer E, Peterson AT, Servin JI, et al. (2006) Ecological niche modelling and prioritizing areas for species reintroductions. Oryx 40: 411–418. DOI: 10.1017/S0030605306001360

    Article  Google Scholar 

  23. MaxEnt software Version 3.3.3k. AT and T Research. (Available online at: http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc, accessed on 12th July, 2015)

  24. Olsen CS, Helles F (1997) Medicinal plants, markets and margins in the Nepal Himalaya: Trouble in paradise. Mountain Research and Development 17(14): 363–374. DOI: 10.2307/3674025

    Article  Google Scholar 

  25. Pearce J, Lindenmayer D (1998) Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern Australia. Restoration ecology 6(3): 238–243. DOI: 10.1046/j.1526-100X.1998.00636.x

    Article  Google Scholar 

  26. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133(3): 225–245. DOI: 10.1016/S0304-3800(00)00322-7

    Article  Google Scholar 

  27. Phillips B, Chipperfield JD, Kearney MR (2008) The toad ahead: challenges of modelling the range and spread of an invasive species. Wildlife Research 35(3): 222–234. DOI: 10.1071/WR07101

    Article  Google Scholar 

  28. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecological Modelling 190(3–4): 231–259. DOI: 10.1016/j.ecolmodel.2005. 03.026

    Article  Google Scholar 

  29. Profirio LL, Harris RMB, Lefroy EC, et al. (2014) Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change. PLoS One 9(11): e113749. DOI: 10.1371/journal.pone.0113749

    Article  Google Scholar 

  30. Purvis A, Gittleman JL, Cowlishaw G, et al. (2000) Predicting extinction risk in declining species. Proceedings of the Royal Society B: Biological Sciences 267(1456): 1947–1952. DOI: 10.1098/rspb.2000.1234

    Article  Google Scholar 

  31. Rana HK (2014a) Family liliaceae in Nepal: taxonomy, distribution pattern and species richness. M.Sc. dissertation, Central Department of Botany, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal.

    Google Scholar 

  32. Rana SK (2014b) Species distribution and ecological niche modelling of Alnus species in Nepal. M.Sc. dissertation, Central Department of Botany, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal.

    Google Scholar 

  33. Rana SK, Oli PS, Rana HK (2015) Traditional botanical knowledge (TBK) on the use of medicinal plants in Sikles area, Nepal. Asian Journal of Plant Science and Research 5(11): 8–15.

    Google Scholar 

  34. Rajbhandary S, Ranjitkar S (2006) Herbal drugs and pharmacognosy-Monographs on commercially important medicinal plants of Nepal. Ethnobotanical Society of Nepal, Kathmandu, Nepal.

    Google Scholar 

  35. Ranjitkar S, Xu J, Shrestha KK, et al. (2014a) Ensemble forecast of climate suitability for the trans-Himalayan Nyctaginaceae species. Ecological Modelling 282: 18–24. DOI: 10.1016/j.ecolmodel.2014.03.003

    Article  Google Scholar 

  36. Ranjitkar S, Kindt R, Sujakhu NM, et al. (2014b) Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Global Ecology and Conservation 1: 2–12.

    Article  Google Scholar 

  37. Ranjitkar S, Sujakhu NM, Lu Y, et al. (2016) Climate modelling for agroforestry species selection in Yunnan Province, China. Environmental Modelling and Software 75: 263–272. DOI: 10.1016/j.envsoft.2015.10.027

    Article  Google Scholar 

  38. Rawat RBS, Uniyal RC (2003) National medicinal plants board, Committed for overall development of the sector. Agrobios 1: 12–17.

    Google Scholar 

  39. Salick J, Zhendong F, Byg A (2009) Eastern Himalayan alpineplant ecology, Tibetan ethnobotany, and climate change. Global Environmental Change 19: 147–155. DOI: 10.1016/j.gloenvcha.2009.01.008

    Article  Google Scholar 

  40. Sanchez-Cordero V, Cirelli V, Munguíal M, et al. (2005) Place prioritization for biodiversity representation using species’ ecological niche modeling. Biodiversity Informatics 2: 11–23.DOI:10.17161/bi.v2i0.9

    Article  Google Scholar 

  41. Shrestha UB, Bawa KS (2014) Harvesters’ perceptions of population status and conservation of Chinese caterpillar fungus in the Dolpa region of Nepal. Regional Environmental Change 15(8): 1731–1741. DOI: 10.1007/s10113-014-0732-7

    Article  Google Scholar 

  42. Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiversity under future climates? Ecology and Society 15(1): 8.

    Article  Google Scholar 

  43. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical transactions of the Royal Society of London. Series B: Biological sciences 365(1549): 2025–2034. DOI: 10.1098/rstb.2010.0037

    Google Scholar 

  44. Van Vuuren DP, den Elzen MGJ, Lucas PL, et al. (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change 81(2): 119–159. DOI: 10.1007/s10584-006-9172-9

    Article  Google Scholar 

  45. Wang JJ, Cao B, Bai CK, et al. (2014) Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on MaxEnt modeling and GIS. Bulletin of Botanical Research 34(5): 642–649. DOI: 10.7525/j.issn.1673-5102.2014.05.009

    Google Scholar 

  46. Weyant J, Azar C, Kainuma M, et al. (2009) Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel. Geneva, Switzerland: IPCC Secretariat.

    Google Scholar 

  47. Woodward FI (1987) Climate and plant distribution. Cambridge University Press. p 174.

    Google Scholar 

  48. Chen XQ, Liang SY, Xu J, et al. (2000) Liliaceae. In: In Wu ZY and Raven PH (eds.). Flora of China, vol. 24. Missouri Botanical Garden Press, St. Louis, USA, and Science Press, Beijing, China. pp 73–263.

    Google Scholar 

  49. Yeum HS, Lee YC, Kim SH, et al. (2007) Fritillaria cirrhosa, Anemarrhena asphodeloides, Lee-Mo-Tang and cyclosporine a inhibit ovalbumin-induced eosinophil accumulation and Th2-mediated bronchial hyperresponsiveness in a murine model of asthma. Basic & Clinical Pharmacology & Toxicology 100(3): 205–213. DOI: 10.1111/j.1742-7843.2007.00043.x

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Cornell Nepal Study Program for the partial financial supports to carry out field work. Thanks goes to Alexander Robert O’Neill for English correction in our manuscripts. We are indebted to all the faculty members of Central Department of Botany, TU, Nepal as well as KATH and TUCH for facilitating herbarium specimens. Sailesh RANJITKAR is supported from the CGIAR research programs on ‘Forests, Trees and Agroforestry’ (CRP6.2) and the National Natural Science Foundation of China (31270524).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Santosh Kumar Rana or Sailesh Ranjitkar.

Additional information

http://orcid.org/0000-0001-7812-9267

http://orcid.org/0000-0002-9666-2337

http://orcid.org/0000-0002-3845-4468

http://orcid.org/0000-0002-6041-1325

http://orcid.org/0000-0002-4741-3975

Author(s) contributed equally

Electronic Supplementary Materials: Supplementary materials (Appendixes 1-4) are available in the online version of this article at http://dx.doi.org/10.1007-s11629-015-3822-1

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rana, S.K., Rana, H.K., Ghimire, S.K. et al. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J. Mt. Sci. 14, 558–570 (2017). https://doi.org/10.1007/s11629-015-3822-1

Download citation

Keywords

  • Commercial exploitation
  • Conservation
  • Lily
  • Fritillaria cirrhosa
  • Lilium nepalense
  • MaxEnt modelling
  • Species distribution