Skip to main content
Log in

Contribution of aboveground litter to soil respiration in Populus davidiana Dode plantations at different stand ages

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle. However, variations in the contribution of aboveground litter to the total soil respiration for stands of varying ages are poorly understood. To assess soil respiration induced by aboveground litter, treatments of litter and no litter were applied to 5-, 10-, and 20-year-old stands of Populus davidiana Dode in the sandstorm source area of Beijing-Tianjin, China. Optimal nonlinear equations were applied to model the combined effects of soil temperature and soil water content on soil respiration. Results showed that the monthly average contribution of aboveground litter to total soil respiration were 18.46% ± 4.63%, 16.64% ± 9.31%, and 22.37% ± 8.17% for 5-, 10-, and 20-year-old stands, respectively. The relatively high contribution in 5- and 20-year-old stands could be attributed to easily decomposition products and high accumulated litter, respectively. Also, it fluctuated monthly for all stand ages due to substrate availability caused by phenology and environmental factors. Litter removal significantly decreased soil respiration and soil water content for all stand ages (p < 0.05) but not soil temperature (p > 0.05). Variations of soil respiration could be explained by soil temperature at 5-cm depth using an exponential equation and by soil water content at 10-cm depth using a quadratic equation, whereas soil respiration was better modeled using the combined parameters of soil temperature and soil water content than with either soil temperature or soil water content alone. Temperature sensitivity (Q 10) increased with stand age in both the litter and the no litter treatments. Considering the effects of aboveground litter, this study provides insights for predicting future soil carbon fluxes and for accurately assessing soil carbon budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adekalu KO, Olorunfemi IA, Osunbitan JA (2007) Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Bioresource Technology 98: 912–917. DOI: 10.1016/j.biortech.2006.02.044

    Article  Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology 94: 713–724. DOI: 10.1111/j.1365-2745.2006.01142.x

    Article  Google Scholar 

  • Almagro M, López J, Querejeta JI, et al. (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biology & Biochemistry 41: 594–605. DOI: 10.1016/j.soilbio.2008.12.021

    Article  Google Scholar 

  • Atarashi-Andoh M, Koarashi J, Ishizuka S, et al. (2012) Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures. Agricultural and Forest Meteorology 152: 149–158. DOI: 10.1016/j.agrformet.2011.09.015

    Article  Google Scholar 

  • Bahn M, Rodeghiero M, Anderson-Dunn M, et al. (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11: 1352–1367. DOI: 10.1007/s10021-008-9198-0

    Article  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds.), Methods of Soil Analysis, Part 2, Chemical and Microbial Properties. Agronomy Monograph, 9. Agronomy Society of America. Madison, Wisconsin, America. pp 595–624.

    Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry 32: 1625–1635. DOI: 10.1016/S0038-0717(00)00077-8

    Article  Google Scholar 

  • Caprez R, Niklaus PA, Körner C (2012) Forest soil respiration reflects plant productivity across a temperature gradient in the Alps. Oecologia 170: 1143–1154. DOI: 10.1007/s00442-012-2371-3

    Article  Google Scholar 

  • Chen B, Liu S, Ge J, et al. (2010) Annual and seasonal variations of Q10 soil respiration in the Sub-Alpine forest of the Eastern Qinghai-Tibet Plateau, China. Soil Biology & Biochemistry 42: 1735–1742. DOI: 10.1016/j.soilbio.2010.06.010

    Article  Google Scholar 

  • Curiel Y, Janssens I, Carrara A, et al. (2004) Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biology 10: 161–169. DOI: 10.1111/j.1529-8817.2003.00727.x

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperature mixed hardwood forest. Global Change Biology 4: 217–227. DOI: 10.1046/j.1365-2486.1998.00128.x

    Article  Google Scholar 

  • Eckstein RL and Donath TW (2005) Interactions between litter and water availability affect seedling emergence in four familial pairs of floodplain species. Journal of Ecology 93: 807–816. DOI: 10.1111/j.1365-2745.2005.01015.x

    Article  Google Scholar 

  • Epron D, Marsden C, Thongo M’bou A, et al. (2009) soil carbon dynamics following afforestation of a tropical Savannah with Eucalyptus in Congo. Plant and Soil 323: 309–322. DOI: 10.1007/s11104-009-9939-7

    Article  Google Scholar 

  • Fekete I, Kotroczó Z, Varga C, et al. (2014) Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biology & Biochemistry 74: 106–114. DOI: 10.1016/j.soilbio.2014.03.006

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, et al. (2006) Climate-carbon cycle feedback analysis: results from The C4MIP Model intercomparison. Journal of Climate 19: 3337–3343. DOI: 10.1175/JCLI3800.1

    Article  Google Scholar 

  • Fuentes JP, Bown H, Perez-Quezada JF, et al. (2014) Litter removal in a sclerophyll forest: short-and medium-term consequences for soil properties. Soil Science Society of America Journal 78(2): 634–644. DOI: 10.2136/sssaj2013. 03.0100

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, et al. (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6: 751–765. DOI: 10.1046/j.1365-2486.2000.00349.x

    Article  Google Scholar 

  • Gong J, Ge Z, An R, et al. (2012) Soil respiration in Poplar plantations in Northern China at different forest ages. Plant and Soil 360: 109–122. DOI: 10.1007/s11104-011-1121-3

    Article  Google Scholar 

  • Gough CM, Seiler JR, Wiseman PE, et al. (2005) Soil CO2 efflux in Loblolly pine (Pinus taeda L.) plantations on the Virginia piedmont and South Carolina Coastal Plain over a rotationlength chronosequence. Biogeochemistry, 73: 127–147. DOI: 10.1007/s10533-004-0566-3

    Article  Google Scholar 

  • Han GX, Zhou GS, Xu ZZ, et al. (2007) Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology & Biochemistry 39: 418–425. DOI: 10.1016/j.soilbio.2006.08.009

    Article  Google Scholar 

  • Harmon ME, Bible K, Ryan MG, et al. (2004) Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem. Ecosystems, 7(5): 498–512. DOI: 10.1007/s10021-004-0140-9

    Google Scholar 

  • Janssens I, Pilegaard K (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology 9: 911–918. DOI: 10.1046/j.1365-2486.2003.00636.x

    Article  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry 38: 425–448. DOI: 10.1016/j.soilbio.2005.08.020

    Article  Google Scholar 

  • Law BE, Thornton PE, Irvine J, et al. (2001) Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology 7: 755–777. DOI: 10.1046/j.1354-1013.2001.00439.x

    Article  Google Scholar 

  • Li YQ, Xu M, Sun OJ, et al. (2004) Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biology & Biochemistry 36: 2111–2114. DOI: 10.1016/j.soilbio.2004.06.003.

    Article  Google Scholar 

  • LIoyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Functional Ecology 8(3): 315–323. DOI: 10.2307/2389824

    Article  Google Scholar 

  • Liu XP, Zhang WJ, Cao JS, et al. (2013) Carbon storages in plantation ecosystems in sand source areas of North Beijing, China. PloS ONE 8 (12): e82208. DOI: 10.1371/journal.pone.0082208

    Article  Google Scholar 

  • Luo Y, Wan S, Hui D, et al. (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413: 622–625. DOI: 10.1038/35098065

    Article  Google Scholar 

  • Ma YC, Piao SL, Sun ZZ, et al. (2014) Stand ages regulate response of soil respiration to temperature in a Larix principis-rupprechtii plantation. Agricultural and Forest Meteorology 184: 179–187. DOI: 10.1016/j.agrformet.2013.10.008

    Article  Google Scholar 

  • Nouvellon Y, Epron D, Marsden C, et al. (2012) Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full eucalyptus rotation after afforestation of a tropical Savannah. Biogeochemistry 111: 515–533. DOI: 10.1007/s10533-011-9685-9

    Article  Google Scholar 

  • Pan KW, He J, Wu N (2004) Effect of forest litter on microenvironment conditions of forestland. Chinese Journal of Applied Ecology 15: 153–158. (In Chinese with English abstract). DOI: 10.13287/j.1001-9332.2004.0035

    Google Scholar 

  • Pang X, Bao W, Zhu B, et al. (2013) Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation. Agricultural and Forest Meteorology 171-172: 57–64. DOI:10.1016/j.agrformet.2012.12.001

    Article  Google Scholar 

  • Peng S, Piao S, Wang T, et al. (2009) Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology & Biochemistry 41 (5): 1008–1014. DOI: 10.1016/j.soilbio. 2008.10.023

    Article  Google Scholar 

  • Prévost-Bouré NC, Soudani K, Damesin C, et al. (2010) Increased in aboveground fresh litter quantity over-stimulates soil respiration in a temperate deciduous forest. Applied Soil Ecology 46(1): 26–34. DOI: 10.1016/j.apsoil.2010.06.004

    Article  Google Scholar 

  • Raich JW (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48: 71–90. DOI: 10.1023/A:1006112000616

    Article  Google Scholar 

  • Reay D, Sabine C, Smith P, et al. (2007) Climate change 2007: Spring-time for sinks. Nature 446: 727–728. DOI:10.1038/446727a

    Article  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, et al. (2002) Annual variation in soil respiration and its components in a Coppice oak forest in Central Italy. Global Change Biology 8: 851–866. DOI: 10.1046/j.1365-2486.2002.00521.x

    Article  Google Scholar 

  • Saiz G, Byrne KA, Butterbach-bahl K, et al. (2006) Stand agerelated effects on soil respiration in a first rotation Sitka spruce Chronosequence in central Ireland. Global Change Biology 12: 1007–1020. DOI: 10.1111/j.1365-2486.2006.01145.x

    Article  Google Scholar 

  • Sala OE, Jackson RB, Mooney HA, et al. (2000) Methods in Ecosystem Science. Springer, New York, UK.

    Book  Google Scholar 

  • Sayer EJ (2005) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews 81(1): 1–31. DOI: 10.1017/S1464793105006846

    Article  Google Scholar 

  • Sayer EJ, Powers JS, Tanner TVJ (2007) Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE 12: e1299. DOI: 10.1371/journal. pone.0001299

    Article  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, et al. (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change 1(6): 304–307. DOI: 10.1038/nclimate1190

    Article  Google Scholar 

  • Sayer EJ, Powers JS, Tanner EVJ (2007) Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PloS ONE 2(12): e1299. DOI: 10.1371/journal.pone.0001299

    Article  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48: 7–20. DOI: 10.1023/A:1006247623877

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agriculture Handbook No. 436. United States Department of Agriculture (USDA), Natural Resources Conservation Service, Washington, USA.

    Google Scholar 

  • Subke JA, Inglima I, Costufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biology 12(6): 921–943. DOI: 10.1111/j.1365-2486.2006.01117.x

    Article  Google Scholar 

  • Sulzman EW, Brant JB, Bowden RD, et al. (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73: 231–256. DOI: 10.1007/s10533-004-7314-6

    Article  Google Scholar 

  • Tang JW, Baldocchi DD (2005) Spatial-temporal variation in soil respiration in an Ooak-grass Savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 73: 183–207. DOI: 10.1007/s10533-004-5889-6

    Article  Google Scholar 

  • Tang JW, Bolstad PV, Martin JG (2009) Soil carbon fluxes and stocks in a great lakes forest chronosequence. Global Change Biology 15: 145–155. DOI: 10.1111/j.1365-2486.2008.01741.x

    Article  Google Scholar 

  • Vasconcelos SS, Zarin DJ, Capanu M, et al. (2004) Moisture and substrate availability constrain soil trace gas fluxes in an Eastern Amazonian regrowth forest. Global Biogeochemical Cycles 18(2): 1–10. DOI: 10.1029/2003GB002210

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29–38. DOI: 10.1097/00010694-193401000-00003

    Article  Google Scholar 

  • Wang GJ, Tian DL, Yan WD, et al. (2009) Effects of aboveground litter exclusion and addition on soil respiration in a Cuninghamia Lanceolata plantation in China. Chinese Journal of Plant Ecology 33(4): 739–741. DOI: 10.3773/j.issn.1005-264x.2009.04.012 (In Chinese)

    Google Scholar 

  • Wetterstedt JAM, Persson T, Agren GI (2010) Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Change Biology 16(6): 1806–1819. DOI: 10.1111/j.1365-2486.2009.02112.x

    Article  Google Scholar 

  • Wiseman PE, Seiler JR (2004) Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. Forest Ecology and Management 192: 297–311. DOI: 10.1016/j.foreco.2004.01.017

    Article  Google Scholar 

  • Xu S, Liu L, Sayer EJ (2013) Variability of aboveground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences Discuss 10: 5245–5272. DOI: 10.5194/bgd-10-5245-2013

    Article  Google Scholar 

  • Xu M, Qi Y (2001) Soil-Surface CO2 Efflux and its spatial and temporal variations in a young ponderosa pine plantation in Northern California. Global Change Biology 7: 667–677. DOI: 10.1046/j.1354-1013.2001.00435.x

    Article  Google Scholar 

  • Yan M, Zhang X, Zhou G, et al. (2011) Temporal and spatial variation in soil Respiration of poplar plantations at different developmental stages in Xinjiang, China. Journal of Arid Environments 75: 51–57. DOI: 10.1016/j.jaridenv.2010.09.005

    Article  Google Scholar 

  • Zeng XH, Zhang WJ, Shen HT, et al. (2014) Soil respiration response in different vegetation types at Mount Taihang, China. Catena 116: 78–85. DOI: 10.1016/j.catena.2013.12.018

    Article  Google Scholar 

  • Zhou ZY, Zhang ZQ, Zha TG, et al. (2013) Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biology & Biochemistry 57: 135–143. DOI: 10.1016/j.soilbio.2012.08.010

    Article  Google Scholar 

  • Zimmermann M, Meir P, Bird M, et al. (2009) Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest. Soil Biology & Biochemistry 41(6): 1338–1340. DOI: 10.1016/j.soilbio.2009.02.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fa-dong Li or Wan-jun Zhang.

Additional information

http://orcid.org/0000-0002-1556-7021

http://orcid.org/0000-0002-6930-3419

http://orcid.org/0000-0001-5869-6109

http://orcid.org/0000-0002-7991-3640

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, Fd., Zhang, Wj. et al. Contribution of aboveground litter to soil respiration in Populus davidiana Dode plantations at different stand ages. J. Mt. Sci. 13, 1000–1012 (2016). https://doi.org/10.1007/s11629-015-3777-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3777-2

Keywords

Navigation