Journal of Mountain Science

, Volume 13, Issue 10, pp 1760–1772 | Cite as

Mid and late Holocene forest fires and deforestation in the subalpine belt of the Iberian range, northern Spain

  • José M. García-Ruiz
  • Yasmina Sanjuán
  • Graciela Gil-Romera
  • Penélope González-Sampériz
  • Santiago Beguería
  • José Arnáez
  • Paz Coba-Pérez
  • Amelia Gómez-Villar
  • Javier Álvarez-Martínez
  • Noemí Lana-Renault
  • Estela Pérez-Cardiel
  • Carlos López de Calle


The conversion of subalpine forests into grasslands for pastoral use is a well-known phenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments in soil profiles affected by shallow landsliding enabled us to date the occurrence of fires and the periods of conversion of subalpine forest into grasslands in the Urbión Mountains, Iberian Range, Spain. We found that the treeline in the highest parts of the northwestern massifs of the Iberian Range (the Urbión, Demanda, Neila, and Cebollera massifs) is currently between 1500 and 1600 m a.s.l., probably because of pastoral use of the subalpine belt, whereas in the past it would have reached almost the highest divides (at approximately 2100–2200 m a.s.l.). The radiocarbon dates obtained indicate that the transformation of the subalpine belt occurred during the Late Neolithic, Chalcolithic, Bronze Age, Iron Age, and Middle Ages. Forest clearing was probably moderate during fires prior to the Middle Ages, as the small size of the sheep herds and the local character of the markets only required small clearings, and therefore more limited fires. Thus, it is likely that the forest recovered burnt areas in a few decades; this suggests the management of the forest and grasslands following a slash-and-burn system. During the Middle and Modern Ages deforestation and grassland expansion affected most of the subalpine belt and coincided with the increasing prevalence of transhumance, as occurred in other mountains in the Iberian Peninsula (particularly the Pyrenees). Although the occurrence of shallow landslides following deforestation between the Neolithic and the Roman Period cannot be ruled out, the most extensive shallow landsliding processes would have occurred from the Middle Ages until recent times.


Forest fires Holocene Subalpine grasslands Shallow landslides Landscape changes Iberian Range 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvera B, Puigdefábregas J (1985) Daily pulses of suspended and dissolved load in snowmelt runoff. Notebooks of GeographicResearch (Cuadernos de Investigación Geográfica) 11: 5–20. (In Spanish) DOI: 10.18172/cig.938CrossRefGoogle Scholar
  2. Anglada S, Balcells E, et al. (1980) The rural life in the Spanish Mountains. Jaca: Institute of PyreneanStudies. p 108. (In Spanish)Google Scholar
  3. Arnáez Vadillo J (1987) Landforms and processes in hillslope evolution of the Sierra Demanda, Iberian Range. Notebooks of GeographicResearch (Cuadernos de Investigación Geográfica) 13: 7–153. (In Spanish) DOI: 10.18172/cig.962Google Scholar
  4. Bal MC, Pelachs A, Perez-Obiol R, et al. (2011) Fire history and human activities during the last 3300 cal yr BP in Spain’s Central Pyrenees: The case of the Estany of Bourg. Palaeogeography, Palaeoclimatology, Palaeoecology 300(1-4): 179–190. DOI:10.1016/j.palaeo.2010.12.023CrossRefGoogle Scholar
  5. Barrios Gil I (2005) The beginning of Neolithic settlements in the province of La Rioja. Veleia 22: 51–76. (In Spanish)Google Scholar
  6. Berrocal MC, Sebastián López MC, González AU, et al. (2014) Landscape construction and long-term economic practices: an example from the Spanish Mediterranean uplands through rock art archaeology. Journal of Archaeological Method and Theory 21(3): 589–615. DOI: 10.10007/s10816-012-9157-0CrossRefGoogle Scholar
  7. Blarquez O, Carcaillet C, Bremond L, et al. (2010) Trees in the subalpine belt since 11700 cal BP: Origin, expansion and alteration of the modern forest. The Holocene 20: 139–146. DOI: 10.1177/0959683609348857CrossRefGoogle Scholar
  8. Camarero Martínez JJ, Gutiérrez Merino E (2008) The response of Pinus uncinata growth to climate in relict populations of the Iberian Range. Zubía Monograph 20: 61–96. (In Spanish)Google Scholar
  9. Carrión JS, Fuentes N, González-Sampériz P, et al. (2007) Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quaternary Science Reviews 26: 1455–1475. DOI:10.1016/j.quascirev.2007.03.013CrossRefGoogle Scholar
  10. Colombaroli D, Vannière B, Emmanuel C, et al. (2008) Firevegetation interactions during the Mesolithic-Neolitic transition at Lagodell’Accesa, Tuscany, Italy. The Holocene 18: 679–692. DOI: 10.1177/0959683608091779CrossRefGoogle Scholar
  11. Colombaroli D, Henne PD, Kaltenrieder P, et al. (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. Journal of Ecology 98(6): 1346–1357. DOI: 10.1177/0959683608091779CrossRefGoogle Scholar
  12. Colombaroli D, Beckmann M, van der Knaap WO, et al. (2013) Changes in biodiversity and vegetation composition in the central Swiss Alps during the transition from pristine forest to first farming. Diversity and Distributions 19: 157–170. DOI: 10.1111/j.1472-4642.2012.00930.xCrossRefGoogle Scholar
  13. Cunill R, Soriano JM, Bal MC, et al. (2012) Holocene treeline changes on the south slope of the Pyrenees: A pedoanthropological analysis. Vegetation History and Archaeobotany 21(4-5): 373–384. DOI: 10.1007/s00334-011-0342-y.CrossRefGoogle Scholar
  14. Daniau AL, Bartlein PJ, Harrison SP, et al. (2012) Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles 26(4): GB4007. DOI: 10.1029/2011GB004249CrossRefGoogle Scholar
  15. Diago Hernando M (2002) Mesta and transhumance in Castille (13th to 19th centuries). Madrid: Arc Books. p. 96.Google Scholar
  16. Dietre B, Walser C, Lambers K, et al. (2014) Palaeoecological evidence from Mesolithic to Medieval climatic change and anthropogenic impact on the Alpine flora and vegetation of the Silvretta Massif (Switzerland/Austria). Quaternary International 353: 3–16. DOI: 10.1016/j.quaint.2014.05.001CrossRefGoogle Scholar
  17. Galop D, Jalut G (1994) Differential human impact and vegetation history in two adjacent Pyrenean valleys in the Ariège basin, southern France, from 3000 BP to the present.Vegetation History and Archaeobotany 3: 225–244.Google Scholar
  18. García De Celis A, Arroyo Pérez P, Gandía Fernández A (2008) Recent changes in the upper forest limit of the Urbión Sierra: forest management, livestock and climate. Zubía Monographs 20: 97–118. (In Spanish)Google Scholar
  19. García-Ruiz JM (2015) Why geomorphology is a global science. Notebooks of Geographic Research (Cuadernos de Investigación Geográfica) 41(1): 87–105. (In Spanish) DOI: 10.18172/cig.2652CrossRefGoogle Scholar
  20. García-Ruiz JM, Puigdefábregas J (1982) Erosion landforms in the Southern Pyrenees Eocene flysch. Notebooks of GeographicResearch (Cuadernos de Investigación Geográfica) 8: 83–126. (In Spanish) DOI: 10.18172/cig.897Google Scholar
  21. García-Ruiz JM, Lasanta T (1990) Land-use changes in the Spanish Pyrenees. Mountain Research and Development 10(3): 267–279.CrossRefGoogle Scholar
  22. García-Ruiz JM, Alvera B, del Barrio G, et al. (1990) Geomorphic processes above the timberline in the Spanish Pyrenees. Mountain Research and Development 10(3): 201–214.CrossRefGoogle Scholar
  23. García-Ruiz JM, Valero-Garcés B (1998) Historical geomorphic processes and human activities in the Central Spanish Pyrenees. Mountain Research and Development 18(4): 309–320. DOI: 10.2307/3674096CrossRefGoogle Scholar
  24. García-Ruiz JM, Ortigosa L, et al. (1998) Glacial Geomorphology in the Iberian Range. In: Gómez-Ortiz A, Pérez-Alberti A (eds.), Glacial landforms in the Spanish mountains, University of Santiago de Compostela, Santiago de Compostela. pp 347–381. (In Spanish)Google Scholar
  25. García-Ruiz JM, Beguería S, Alatorre LC, et al. (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124: 250–259. DOI: 10.1016/j.geomorph.2010.03.036CrossRefGoogle Scholar
  26. García-Ruiz JM, López-Moreno JI, et al. (2015) The geoecological effects of Global Change in the Central Spanish Pyrenees: A review at different spatial and temporal scales. Pirineos 170: e012. (In Spanish) DOI: 10.3989/Pirineos.2015.170005CrossRefGoogle Scholar
  27. Gil García MJ, Tomás Las Heras R, Nuñez Olivera E, et al. (1995) Pollen analysis of a peatbog deposit in the Cameros Sierra (La Rioja, Spain). Zubía 13: 33–41. (In Spanish)Google Scholar
  28. Gil García MJ, Tomás Las Heras R, Nuñez Olivera E, et al. (1996) Human activity on natural environment in the Cameros Sierra from pollen analysis. Zubía Monograph 8: 29–41. (In Spanish)Google Scholar
  29. Gil García MJ, Dorado Valiño M, Valdeolmillos Rodríguez A, et al.(2002) Late-glacial and Holocene palaeoclimatic record from Sierra Cebollera (northern Iberian Range, Spain). Quaternary International 93-94: 13–18. DOI: 10.1016/S1040-6182(02)00003-4CrossRefGoogle Scholar
  30. Gil-Romera G, Carrión JS, Pausas JG, et al. (2010) Holocene fire activity and vegetation response in South-Eastern Iberia. Quaternary Science Reviews 29: 1082–1092. DOI: 10.1016/j.quascirev.2010.01.006CrossRefGoogle Scholar
  31. Gil-Romera G, González-Sampériz P, Lasheras-Álvarez L, et al. (2014) Biomass-modulated fire dynamics during the Last Glacial-Interglacial transition at the Central Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology 402: 113–124. DOI:10.1016/j.palaeo.2014.03.015CrossRefGoogle Scholar
  32. Gómez-Lobo A (1993) Vegetation history during the last 15,000 years in the Urbion Peaks from pollen analysis. PhD thesis, University of Alcalá de Henares. p 173. (In Spanish)Google Scholar
  33. Gómez Urdáñez J (1986) Subsistence and impoverishment in Camero Viejo at the end of the Modern Ages. Brocar 12: 103–140. (In Spanish)Google Scholar
  34. Gómez-Villar A, Sanjuán Y, García-Ruiz JM, et al. (2014) Sediment organization and adjustment in a torrential reach of the Upper Ijuez River, central Spanish Pyrenees. Notebooks of Geographic Research (Cuadernos de Investigación Geográfica) 40(1): 191–214. (In Spanish) DOI: 10.18172/cig. 2566CrossRefGoogle Scholar
  35. Guiguet-Covex C, Arnaud F, Poulenard J, et al. (2011) Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): The role of climate and human activities. The Holocene 21(4): 651–665. DOI: 10.1177/0959683610391320CrossRefGoogle Scholar
  36. Hantel M, Maurer C, Mayer D (2012) The snowline climate of the Alps 1961-2010. Theoretical and Applied Climatology 110: 517–537. DOI: 10.1007/s00704-012-0688-9CrossRefGoogle Scholar
  37. Höllermann P (1985) The periglacial belt of mid-latitude mountains from a geoecological point of view. The Earth (Erdkunde) 39: 259–270.Google Scholar
  38. Lana-Renault N, Alvera B, García-Ruiz JM (2011) Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment. Arctic, Antarctic, and Alpine Research 43(2): 213–222. DOI: 10.1657/1938-4246-43.2.213CrossRefGoogle Scholar
  39. Lasheras-Álvarez L, Pérez-Sanz A, et al. (2013) History of the fire and vegetation in a Holocene sequence of the Central Pyrenees: La Basa de la Mora lake. Notebooks of GeographicResearch (Cuadernos de Investigación Geográfica) 39(1): 7–95. (In Spanish) DOI: 10.18172/cig.2000CrossRefGoogle Scholar
  40. López De Calle C, Pérez Arrondo C (1995) Radiocarbon dates and settlement phases in the megalithic tombs of Cameros (La Rioja). Notebooks of Prehistory-Archaeology (Cuadernos de Sección Prehistoria-Arqueología) 6:343–360. (In Spanish)Google Scholar
  41. López De Calle C, Tudanca JM (2014) Looking Cameros from Archaeology: attitudes and methodological proposals in landscape interpretation. Berceo 167: 121–175. (In Spanish)Google Scholar
  42. López De Calle C, Iriarte MJ, Zapata L (2001) Palaeoenvironmental analyses in the Collado del Mallo dolmen (Trevijano, La Rioja). Feasibility and obstacles of plant palaeoecology in dolmenic structures. Zubía Monograph 13: 65–96. (In Spanish)Google Scholar
  43. López-Moreno JI, García- Ruiz JM (2004) Influence of snow accumulation and snowmelt on streamflow in the Central Spanish Pyrenees. Hydrological Sciences Journal 49(5): 787–802. DOI: 10.1623/hysj.49.5.787.55135CrossRefGoogle Scholar
  44. Marlon JR, Bartlein PJ, Carcaillet C, et al. (2009) Climate and human influences in global biomass burning over the past two millennia. Nature Geoscience 1: 697–702. DOI: 10.1038/ngeo313CrossRefGoogle Scholar
  45. Marlon JR, Bartlein PJ, Daniau AL, et al. (2013) Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quaternary Science Reviews 65: 5–25. DOI: 10.1016/j.quascirev.2012.11.029CrossRefGoogle Scholar
  46. Marty C, Meister R (2012) Long-term snow and weather observations at Weissfluchjoch and its relation to other highaltitude observatories in the Alps.Theoretical and Applied Climatology 110: 573–583. DOI: 10.1007/s00704-012-0584-3Google Scholar
  47. Miras Y, Ejarque A, Riera S, et al. (2007) Holocene dynamics of the Pyrenean vegetation and human settlements in Andorre after the Early Neolithic, according to pollen analysis of the Bosc dels Estanyons peatbog (2180 m, Vall de Madriu, Andorre). Proceedings of Palaeoevolution (Comptes Rendues Palevolution) 6(4): 291–300. (In French) DOI:10.1016/j.crpv.2007.02.005CrossRefGoogle Scholar
  48. Miras Y, Ejarque A, Orengo H, et al. (2010) Prehistoric impact on landscape and vegetation at high altitudes: An integrated palaeoecological and archaeological approach in the eastern Pyrenees (Perafita valley, Andorra). Plant Biosystems 144(4): 924–939. DOI: 10.1080/11263504.2010.491980CrossRefGoogle Scholar
  49. Montserrat J (1992) Glacial and post-glacial climate and vegetation evolution in the Pyrenean south versant: Palinological study. Saragossa: PyreneanInstitute of Ecology. P. 147. (In Spanish)Google Scholar
  50. Morales-Molino C, García-Antón M, Morla C (2011) Late Holocene vegetation dynamics on an Atlantic–Mediterranean mountain in NW Iberia.Palaeogeography, Palaeoclimatology, Palaeoecology 302: 323–337. DOI:10.1016/j.palaeo.2011.01.020Google Scholar
  51. Moreno Fernández (1994) The public woodland in La Rioja during the 18 and 19th centuries: approach to the disorganization of the comunal regime. Logroño: La Rioja Government. p 299. (In Spanish)Google Scholar
  52. Moreno Fernández JR (1996) The transhumant livestock in La Rioja 1752-1865. Una revisión bibliográfica y cuantitativa. Brocar 20: 277–302. (In Spanish)Google Scholar
  53. Ninot JM, Batllori E, Carrillo E, et al. (2008) Timberline structure and limited tree recruitment in the Catalan Pyrenees. Plant Ecology & Diversity 1(1): 47–57. DOI: 10.1080/17550870802260764CrossRefGoogle Scholar
  54. Orengo HA, Palet JM, Ejarque A, et al. (2014) Shifting occupation dynamics in the Madriu-Perafita-Claror valleys (Andorra) from the early Neolithic to the Chalcolithic: The onset of high mountain cultural landscapes. Quaternary International 353: 140–152. DOI: 10.1016/j.quaint.2014.01.035CrossRefGoogle Scholar
  55. Pérez-Díaz S, López-Sáez JA, Galop D (2014) Vegetation dynamics and human activity in the Western Pyrenean Region during the Holocene. Quaternary International 364: 65–77. DOI: 10.1016/j.quaint.2014.10.019CrossRefGoogle Scholar
  56. Pérez-Sanz A, González-Sampériz P, Moreno A, et al. (2013) Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: The Basa de la Mora sequence (NE Spain). Quaternary Science Reviews 73: 149–169. DOI: 10.1016/j.quascirev.2013.05.010CrossRefGoogle Scholar
  57. Reimer P, Bard E, Bayliss A, et al. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal BP. Radiocarbon 55(4): 1869–1887. DOI: 10.2458/azu_js_rc.55. 16947CrossRefGoogle Scholar
  58. Roepke A, Krause R (2013) High montane-subalpine soils in the Montafon Valley (Austria, northern Alps) and their link to land-use, fire and settlement history. Quaternary International 308-309: 178–189. DOI: 10.1016/j.quaint.2013.01.022CrossRefGoogle Scholar
  59. Rojo Guerra MA, Peña L, Royo JI, et al. (2013) Transhumant shepherds of the Old Neolithic in a high mountain environment: Chrono-cultural sequence at ElsTrocs Cave (San Feliú de Veri, Huesca). BSAA Archaeology 79: 9–55. (In Spanish)Google Scholar
  60. Rull V, González-Sampériz P, Corella JP, et al. (2011) Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: the Moncortès lacustrine record. Journal of Paleolimnology 46(3): 387–404. DOI: 10.1007/s10933-010-9444-2CrossRefGoogle Scholar
  61. Sanjuán Y, Gómez-Villar A, Nadal-Romero E, et al. (2014) Linking land cover changes in the sub-alpine and montane belts to changes in a torrential river. Land Degradation & Development. DOI: 10.1002/ldr.2294Google Scholar
  62. Schmidt R. Koinig KA, Thompson R, et al. (2002) A multi proxy core study of the last 7000 years of climate and alpine landuse impacts on an Austrian mountain lake (UnterLandschitzsee, Niedere Tauern). Palaeogeography, Palaeoclimatology, Palaeoecology 187(1-2): 101–120. DOI: 10.1016/S0031-0182(02)00511-4CrossRefGoogle Scholar
  63. Sharma V, Mishra VD, Joshi PK (2013) Implications of climate change on streamflowof a snow-fed river system of the Northwest Himalaya. Journal of Mountain Science 10 (4): 574–587. DOI: 10.1007/s11629-013-2667-8CrossRefGoogle Scholar
  64. Sobrón García I (1987) Approach to the vegetation belts in the mountains of La Rioja. GeographicStudies (Estudios Geográficos) 189: 659–680. (In Spanish)Google Scholar
  65. Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrological Processes 23(1): 78–94. DOI: 10.1002/hyp.7128CrossRefGoogle Scholar
  66. Stuiver M, Reimer J (1993) Extended 14C data base and revised CALIB 3.014 C age calibration program. Radiocarbon 35: 215–230.CrossRefGoogle Scholar
  67. Tinner W, Hubschmid P, Wehrli M, et al. (1999) Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87: 273–289.CrossRefGoogle Scholar
  68. Tinner W, Lotter AF, Ammann B, et al. (2003) Climate change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quaternary Science Reviews 22: 1447–1460. DOI: 10.1016/S0277-3791(03)00083-0CrossRefGoogle Scholar
  69. Van Asch TWJ, Buma J, Van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30(1-2): 25–32. DOI: 10.1016/S0169-555X(99)00042-2CrossRefGoogle Scholar
  70. Vannière B, Power MJ, Roberts N, et al. (2011) Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500-2500 cal. BP). The Holocene 21(1): 53–73. DOI: 10.1177/0959683610384164CrossRefGoogle Scholar
  71. Vegas J (2007) Characteristics of the Upper Pleistocene–Holocene climate events through the sedimentological study of the Grande Lake (Sierra Neila, NO Sistema Ibérico). Journal of theSpanish Geological Society (Revista de la Sociedad Geológica de España) 20(1-2): 53–70. (In Spanish)Google Scholar
  72. Walsh K, Court-Picon M, De Beaulieu JL, et al. (2014) A historical ecology of the Ecrins (Southern French Alps): Archaeology and palaeoecology of the Mesolithic to the Medieval period. Quaternary International 353: 52–73. DOI: 10.1016/j.quaint.2013.08.060CrossRefGoogle Scholar
  73. Zavala LM, De Celis R, Jordán A (2014) How wildfires affect soil properties. A brief review.Notebook of Geographic Research (Cuadernos de InvestigaciónGeográfica) 40(2): 311–331. (In Spanish) DOI: 10.18172/cig.2522Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • José M. García-Ruiz
    • 1
  • Yasmina Sanjuán
    • 1
  • Graciela Gil-Romera
    • 1
  • Penélope González-Sampériz
    • 1
  • Santiago Beguería
    • 2
  • José Arnáez
    • 3
  • Paz Coba-Pérez
    • 4
  • Amelia Gómez-Villar
    • 5
  • Javier Álvarez-Martínez
    • 6
  • Noemí Lana-Renault
    • 3
  • Estela Pérez-Cardiel
    • 7
  • Carlos López de Calle
    • 8
  1. 1.Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC)Campus de Aula DeiZaragozaSpain
  2. 2.Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC)Campus de Aula DeiZaragozaSpain
  3. 3.Area of Physical GeographyUniversity of La RiojaLogroñoSpain
  4. 4.Centro de Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de México, Unidad MoreliaMorelia, MichoacánMéxico
  5. 5.Departamento de Geografía y Geología, Facultad de Filosofía y LetrasUniversidad de León, Campus de VegazanaLeónSpain
  6. 6.Departamento de Ingeniería Agrícola y ForestalUniversidad de Valladolid, Campus La YuteraPalenciaSpain
  7. 7.Department of Geography and Land ManagementUniversity of ZaragozaZaragozaSpain
  8. 8.LogroñoSpain

Personalised recommendations