Advertisement

Journal of Mountain Science

, Volume 13, Issue 6, pp 985–999 | Cite as

Paleoclimatic record from Chumbur-Kosa section in Sea of Azov region since Marine Isotope Stage 11

  • Ye Liang
  • Tai-bao YangEmail author
  • Andrey Aleksevitch Velichko
  • Biao Zeng
  • Pei-hong Shi
  • Lin-dong Wang
  • Yi He
  • Jie Chen
  • Yu Chen
Article

Abstract

Loess–paleosol sequences preserve records of climatic change during the Quaternary, which is important for paleoclimate study. In this study, a loess-palaeosol sequence from the Chumbur-Kosa (CK) site in the Sea of Azov region was investigated to reconstruct climatic variability during the Marine Isotope Stage (MIS)11- MIS 1, using proxies of grain size (GS), magnetic susceptibility (χlf and χfd(%)), carbonate content (CaCO3%) and soil color. The results enabled formulation of a detailed description of the climatic characteristics related to each individual layer. The sequence indicates that the paleoclimate shifted progressively towards increasingly cooler, somewhat drier conditions. The CK section may thus be ideal for reconstructing climatic conditions during the Middle and Late Pleistocene in the Sea of Azov region. However, the χlf value of paleosol S2 in the CK profile indicates different characteristics from the other paleosol layers, dilution of carbonate resulting from carbonate leaching in L2 may be the main reason for the decrease in magnetic susceptibility. Furthermore, through simple analysis part of the environmental evolution process in the Sea of Azov region and Serbia during Middle and Late Pleistocene cycles. The climate cycle expressed by χfd(%) and χlf variations show similar patterns, with rapidly alternating cold and warm intervals. Nevertheless, although the two areas had different climatic regimes, geographical settings, and loess source areas, both exhibited similar climate change trends since the MIS 11.

Keywords

Loess Paleosol Magnetic susceptibility Paleoclimate Sea of Azov 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrowicz W, Lanczont M, Boguckyj AB, et al. (2014) Molluscs and ostracods of the Pleistocene loess deposits in the Halych site (Western Ukraine) and their significance for palaeoenvironmental reconstructions. Quaternary Science Reviews 105: 162–180. DOI: 10.1016/j.quascirev.2014.10.008CrossRefGoogle Scholar
  2. Antoine P, Rousseau DD, Moine O, et al. (2009) Rapid and cyclic aeolian deposition during the Last Glacial in European loess: ahigh-resolution record from Nussloch, Germany. Quaternary Science Reviews 28: 2955–2973. DOI: 10.1016/j.quascirev.2009.08.001CrossRefGoogle Scholar
  3. Basarin B, Buggle B, Hambach U, et al. (2014) Time-scale and astronomical forcing of Serbian loess–paleosol sequences. Global and Planetary Change 122: 89–106. DOI: 10.1016/j.gloplacha.2014.08.007CrossRefGoogle Scholar
  4. Bokhorst MP, Beets CJ, Markovic SB, et al. (2009) Pedochemical climate proxies in Late Pleistocene Serbian–Ukranian loess sequences. Quaternary International 198: 113–123. DOI: 10.1016/j.quaint.2008.09.003CrossRefGoogle Scholar
  5. Bolikhovskaya NS, Molodkov AN (2006) East European loess–palaeosol sequences: Palynology, stratigraphy and correlation. Quaternary International 149: 24–36. DOI: 10.1016/j.quaint. 2005.11.015CrossRefGoogle Scholar
  6. Bronger A (2003) Correlation of loess–paleosol sequences in East and Central Asia with SE Central Europe: towards a continental Quaternary pedostratigraphy and paleoclimatic history. Quaternary International 106: 11–31. DOI: 10.1016/S1040-6182(02)00159-3CrossRefGoogle Scholar
  7. Buggle B, Hambach U, Glaser B, et al. (2009) Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess–paleosol sequences. Quaternary International 196: 86–106. DOI: 10.1016/j.quaint.2008.07.013CrossRefGoogle Scholar
  8. Buggle B, Hambach U, Kehl M, et al. (2013) The progressive evolution of a continental climate in southeast-central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences. Geology 41: 771–774. DOI: 10.1130/G34198.1CrossRefGoogle Scholar
  9. Buggle B, Hambach U, Müller K, et al. (2014) Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 117: 4–22. DOI: 10.1016/j.catena.2013.06.012CrossRefGoogle Scholar
  10. Catt JA (1986) Soils and Quaternary geology: a handbook for field scientists. Oxford University Press, Oxford, UK.Google Scholar
  11. Catto N, Velichko A (2008) Loess-Palaeosol Successions, southern and central Russian Plain: Progressively drier, generally cooler Interglacials. Geophysical Research Abstracts, 10. DOI: 1607-7962/gra/EGU2008-A-04865Google Scholar
  12. Chen F, Bloemendal J, Feng Z, et al. (1999) East Asian monsoon variations during Oxygen Isotope Stage 5: evidence from the northwestern margin of the Chinese loess plateau. Quaternary Science Reviews 18: 1127–1135. DOI: 10.1016/S0277-3791(98)00047-XCrossRefGoogle Scholar
  13. Chen F, Bloemendal J, Wang J, et al. (1997) High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 130: 323–335. DOI: 10.1016/S0031-0182(96)00149-6.CrossRefGoogle Scholar
  14. Ding ZL, Rutter N, Liu TS (1993) Pedostratigraphy of Chinese loess deposits and climatic cycles in the last 2.5 Myr. Catena 20: 73–91. DOI: 10.1016/0341-8162(93)90030-SCrossRefGoogle Scholar
  15. GaudenyiI T, Jovanovic M, Stevens T, et al. (2005) Paleoclimate record in the Upper Pleistocene loess-paleosol sequence at Petrovaradin brickyard (Vojvodina, Serbia). Geologica Carpathica 56: 545–552.Google Scholar
  16. Guo Z, Liu T, Fedoroff N, et al. (1993) Monsoon strength variations in the Loess Plateau before and after 0.85 Ma. Chinese Science Bulletin 38: 143–146.Google Scholar
  17. Haase D, Fink J, Haase G, et al. (2007) Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Reviews 26: 1301–1312. DOI: 10.1016/j.quascirev.2007.02.003CrossRefGoogle Scholar
  18. Haesaerts P, Borziak I, Chirica V, et al. (2003) The east Carpathian loess record: a reference for the middle and late pleniglacial stratigraphy in central Europe [La séquence loessique du domaine est-carpatique: une référence pour le Pléniglaciaire moyen et supérieur d’Europe centrale]. Quaternaire 14: 163–188. DOI: 10.3406/quate.2003.1740CrossRefGoogle Scholar
  19. Han WX, Fang XM, Berger A, et al. (2011) An astronomically tuned 8.1 Ma eolian record from the Chinese Loess Plateau and its implication on the evolution of Asian monsoon. Journal of Geophysical Research: Atmospheres 1984–2012: 116. DOI: 10.1029/2011JD016237Google Scholar
  20. Hao QZ, Guo ZT (2005) Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: implications for monsoon evolution. Journal of Geophysical Research: Solid Earth 110(B12). DOI: 10.1029/2005JB 003765.Google Scholar
  21. Heller F, Evans ME (1995) Loess magnetism. Reviews of Geophysics 33: 211–240. DOI: 10.1029/95RG00579CrossRefGoogle Scholar
  22. Heller F, Liu TS (1982) Magnetostratigraphical dating of loess deposits in China. Nature 300: 431–433. DOI: 10.1038/300431a0CrossRefGoogle Scholar
  23. Heller F, Liu XM, Liu TS, et al. (1991) Magnetic susceptibility of loess in China. Earth and Planetary Science Letters 103: 301–310. DOI: 10.1016/0012-821X(91)90168-HCrossRefGoogle Scholar
  24. Heller F, Meili B, Wang J, et al. (1987) Magnetization and sedimentation history of loess in the central loess plateau of China. In: Aspects of Loess Research. China Ocean Press, Beijing, China. pp 147–163.Google Scholar
  25. Heslop D, Langereis C, Dekkers M (2000) A new astronomical timescale for the loess deposits of Northern China. Earth and Planetary Science Letters 184: 125–139. DOI: 10.1016/S0012-821X(00)00324-1CrossRefGoogle Scholar
  26. Hou SM, Liu XM, Lu B, et al. (2015) Rock Magnetic properties of loess in Nallihan, Turkey and its eviromental significances. Quaternary Sciences 35: 1006–1019. DOI: 10.11928/j.issn. 1001-7410.2015.04.22Google Scholar
  27. Imbrie J, Hays JD, Martinson DG, et al. (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine d18O record. In: Milankovitch and Climate: Understanding the response to astronomical forcing, Dordrecht, pp 269–305.Google Scholar
  28. Jordanova D, Hus J, Geeraerts R (2007) Palaeoclimatic implications of the magnetic record from loess/palaeosol sequence Viatovo (NE Bulgaria). Geophysical Journal International 171: 1036–1047. DOI: 10.1111/j.1365-246X.2007.03576.xCrossRefGoogle Scholar
  29. Jordanova D, Petersen N (1999) Palaeoclimatic record from a loess–soil profile in northeastern Bulgaria—I. Rock magnetic properties. Geophysical Journal International, 138: 520–532. DOI: 10.1046/j.1365-246X.1999.00874.xCrossRefGoogle Scholar
  30. Kemp RA (2001) Pedogenic modification of loess: significance for palaeoclimatic reconstructions. Earth-Science Reviews 54: 145–156. DOI: 10.1016/S0012-8252(01)00045-9CrossRefGoogle Scholar
  31. Khrustalev YP (1989) Consistent Patterns of Sedimentation in the Intracontinental Seas of the Arid Zone. Nauka, Leningrad.Google Scholar
  32. Konert M, Vandenberghe J (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523–535. DOI: 10.1046/j.1365-3091.1997.d01-38.xCrossRefGoogle Scholar
  33. Kukla G (1987) Loess stratigraphy in central China. Quaternary Science Reviews 6: 191–219. DOI: 10.1016/0031-0182(89) 90143-0.CrossRefGoogle Scholar
  34. Kukla G, An Z, Melice J, et al. (1990) Magnetic susceptibility record of Chinese loess. Transactions of the Royal Society of Edinburgh: Earth Sciences 81: 263–288. DOI: 10.1017/S0263593300020794CrossRefGoogle Scholar
  35. Kukla G, Heller F, Liu XM, et al. (1988) Pleistocene climates in China dated by magnetic susceptibility. Geology, 16: 811–814. DOI:10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2CrossRefGoogle Scholar
  36. Liu TS (1985) Loess and the Environment. China Ocean Press, Beijing, China.(In Chinese)Google Scholar
  37. Liu XM, Shaw J, Liu TS, et al. (1992) Magnetic mineralogy of Chinese loess and its significance. Geophysical Journal International 108: 301–308. DOI: 10.1111/j.1365-246X.1992.tb00859.xCrossRefGoogle Scholar
  38. Lu HY, Zhang FQ, Liu XD, et al. (2004) Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China. Quaternary Science Reviews 23: 1891–1900. DOI: 10.1016/j.quascirev.2004.06.005CrossRefGoogle Scholar
  39. Maher B, Prospero J, Mackie D, et al. (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99: 61–97. DOI: 10.1016/j.earscirev.2009.12.001CrossRefGoogle Scholar
  40. Maher BA (1998) Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 137: 25–54. DOI: 10.1016/S0031-0182(97)00103-XCrossRefGoogle Scholar
  41. Maher BA, Thompson R (1991) Mineral magnetic record of the Chinese loess and paleosols. Geology 19: 3–6. DOI: 10.1130/0091-7613(1991)019<0003:MMROTC>2.3.CO;2CrossRefGoogle Scholar
  42. Markovic SB, Bokhorst MP, Vandenberghe J, et al. (2008) Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23: 73–84. DOI: 10.1002/jqs.1124CrossRefGoogle Scholar
  43. Markovic SB, Hambach U, Catto N, et al. (2009) Middle and late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quaternary International 198: 255–266. DOI: 10.1016/j.quaint.2008.12.004CrossRefGoogle Scholar
  44. Markovic SB, Hambach U, Stevens T, et al. (2011) The last million years recorded at the Stari Slankamen (Northern Serbia) loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews 30: 1142–1154. DOI: 10.1016/j.quascirev.2011.02.004CrossRefGoogle Scholar
  45. Markovic SB, Heller F, Kukla GJ, et al. (2003) Magnetostratigraphy of Stari Slankamen loess section. Zbornik radova Instituta za geografiju 32: 20–28.Google Scholar
  46. Markovic SB, Kostic NS, Oches EA (2004) Paleosols in the Ruma loess section (Vojvodina, Serbia). Revista Mexicana de Ciencias Geológicas 21: 79–87.Google Scholar
  47. Markovic SB, Stevens T, Kukla GJ, et al. (2015) Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth-Science Reviews 148: 228–258. DOI: 10.1016/j.earscirev.2015.06.005CrossRefGoogle Scholar
  48. Matishov G, Kovaleva G, Novenko E, et al. (2013) Paleogeography of the Sea of Azov region in the Late Holocene (reconstruction by diatom and pollen data from marine sediments). Quaternary International 284: 123–131. DOI: 10.1016/j.quaint.2012.05.044CrossRefGoogle Scholar
  49. Matishov GG (1999) Modern Development of Estuarine Ecosystems as Exemplified by the Sea of Azov. Apatity, p 366.Google Scholar
  50. Novothny Á, Frechen M, Horváth E, et al. (2011) Investigating the penultimate and last glacial cycles of the Sütto loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International, 234: 75–85. DOI: 10.1016/j.quaint.2010.08.002CrossRefGoogle Scholar
  51. Nugteren G (2004) A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China. Global and Planetary Change 41: 167–183. DOI: 10.1016/j.gloplacha.2004.01.004CrossRefGoogle Scholar
  52. Obreht I, Buggle B, Catto N, et al. (2014) The Late Pleistocene Belotinac section (southern Serbia) at the southern limit of the European loess belt: Environmental and climate reconstruction using grain size and stable C and N isotopes. Quaternary International 334: 10–19. DOI: 10.1016/j.quaint.2013.05.037CrossRefGoogle Scholar
  53. Pécsi M (1990) Loess is not just the accumulation of dust. Quaternary International 7: 1–21. DOI: 10.1016/1040-6182(90)90034-2CrossRefGoogle Scholar
  54. Porter SC, An ZS (1995) Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375: 305–308. DOI: 10.1038/375305a0CrossRefGoogle Scholar
  55. Robertson AR (1977) The CIE 1976 Color-Difference Formulae. Color Research & Application 2: 7–11. DOI: 10.1002/j.1520-6378.1977.tb00104.xCrossRefGoogle Scholar
  56. Shi PH, Yang TB, Tian QC, et al. (2013) Loess record of climatic changes during MIS 12–10 in the Jingyuan section, northwestern Chinese Loess Plateau. Quaternary International 296: 149–159. DOI: 10.1016/j.quaint.2012.08.2102CrossRefGoogle Scholar
  57. Shi ZT, Dong M, Fang XM (2007) The characteristics of later pleistocene loess-paleosol magnetic susceptibility in YiLi Bason. Journal of Lanzhou University (Nature Sciences) 43, 7–10. DOI: 10.13885 /j.issn.0455-2059.2007.02.002Google Scholar
  58. Sotnikova M, Titov V (2009) Carnivora of the Tamanian faunal unit (the Azov Sea area). Quaternary International 201: 43–52. DOI: 10.1016/j.quaint.2008.05.019CrossRefGoogle Scholar
  59. Spassov S, Heller F, Evans M, et al. (2001) The Matuyama/Brunhes geomagnetic polarity transition at Lingtai and Baoji, Chinese loess plateau. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26: 899–904. DOI: 10.1016/S1464-1895(01)00139-9CrossRefGoogle Scholar
  60. Stuut J-BW, Prins MA, Schneider RR, et al. (2002) A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180: 221–233. DOI: 10.1016/S0025-3227(01)00215-8.CrossRefGoogle Scholar
  61. Sun YB, Clemens SC, An ZS, et al. (2006) Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews 25: 33–48. DOI: 10.1016/j.quascirev.2005.07.005.CrossRefGoogle Scholar
  62. Sun YB, He L, Liang LJ, et al. (2011) Changing color of Chinese loess: Geochemical constraint and paleoclimatic significance. Journal of Asian Earth Sciences 40: 1131–1138. DOI: 10.1016/j. jseaes.2010.08.006CrossRefGoogle Scholar
  63. Sun YB, Kutzbach J, An ZS, et al. (2015) Astronomical and glacial forcing of East Asian summer monsoon variability. Quaternary Science Reviews 115: 132–142. DOI: 10.1016/j.quascirev.2015.03.009CrossRefGoogle Scholar
  64. Tsatskin A, Heller F, Gendler T, et al. (2001) A new scheme of terrestrial paleoclimate evolution during the last 1.5 Ma in the Western Black Sea Region: integration of soil studies and loess magmatism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26: 911–916. DOI: 10.1016/S1464-1895(01)00141-7CrossRefGoogle Scholar
  65. Tsatskin A, Heller F, Hailwood E, et al. (1998) Pedosedimentary division, rock magnetism and chronology of the loess/palaeosol sequence at Roxolany (Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology 143: 111–133. DOI: 10.1016/S0031-0182(98)00073-XCrossRefGoogle Scholar
  66. Vandenberghe J, Huijzer BS, Mücher H, et al. (1998) Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). Journal of Quaternary Science 13: 471–485. DOI: 10.1002/(SICI)1099-1417(1998090)13:5<471::AID-JQS401>3.0.CO;2-TCrossRefGoogle Scholar
  67. Vandenberghe J, Mommersteeg H, Edelman D (1993) Lithogenesis and geomorphological processes of the Pleistocene deposits at Maastricht-Belvédère. Mededelingen Rijks Geologische Dienst 47: 7–18.Google Scholar
  68. Vandenberghe J, Nugteren G (2001) Rapid climatic changes recorded in loess successions. Global and Planetary Change 28: 1–9. DOI: 10.1016/S0921-8181(00)00060-6CrossRefGoogle Scholar
  69. Vandenberghe J, Zhisheng A, Nugteren G, et al. (1997) Newabsolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25: 35–38. DOI: 10.1130/0091-7613(1997)025<0035:NATSFT>2.3.CO;2CrossRefGoogle Scholar
  70. Velichko A, Morozova TD, Borisova OK, et al. (2012) Development of the steppe zone in southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov Region. Doklady Earth Sciences 445: 999–1002. DOI: 10.1134/s1028334x12080107CrossRefGoogle Scholar
  71. Velichko AA, Catto N, Tesakov AS, et al. (2009a) Structural specificity of pleistocene loess and soil formation of the southern Russian plain according to materials of Eastern Priazovie. Doklady Earth Sciences 429: 1364–1368. DOI: 10.1134/s1028334x09080273CrossRefGoogle Scholar
  72. Velichko AA, Catto NR, Yu Kononov M, et al. (2009b) Progressively cooler, drier interglacials in southern Russia through the Quaternary: Evidence from the Sea of Azov region. Quaternary International 198: 204–219. DOI: 10.1016/j.quaint.2008.06.005CrossRefGoogle Scholar
  73. Xiong SF, Liu TS, Ding ZL (1996) Phase-difference between summer and winter paleomonsoon variations over East Asia and the tropical pacific forcing of monsoon evolution. Quaternary Sciences 3: 202–210.Google Scholar
  74. Yang SL, Ding ZL (2014) A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochemistry, Geophysics, Geosystems 15: 798–814. DOI: 10.1002/2013GC005113CrossRefGoogle Scholar
  75. Zhang WX, Shi ZT, Liu Y, et al. (2014) Study on the influence of carbonate content on magnetic susceptibility of Talede loesspaleosol sequences in westerly area of China. Journal of Earth Environment 5: 155–162. DOI: 10.7515/JEE201402013Google Scholar
  76. Zhou L, Oldfield F, Wintle A, et al. (1990) Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346: 737–739. DOI: 10.1038/346737a0CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ye Liang
    • 1
  • Tai-bao Yang
    • 1
    Email author
  • Andrey Aleksevitch Velichko
    • 2
  • Biao Zeng
    • 1
  • Pei-hong Shi
    • 1
  • Lin-dong Wang
    • 1
  • Yi He
    • 1
  • Jie Chen
    • 1
  • Yu Chen
    • 1
  1. 1.Institute of Glaciology and Ecogeography, College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina
  2. 2.Institute of GeographyRussian Academy of SciencesMoscowRussia

Personalised recommendations