Skip to main content
Log in

Local vs. cross station simulation of suspended sediment load in successive hydrometric stations: heuristic modeling approach

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The present paper aims at modeling suspended sediment load (SSL) using heuristic data driven methodologies, e.g. Gene Expression Programming (GEP) and Support Vector Machine (SVM) in three successive hydrometric stations of Housatonic River in U.S. The simulations were carried out through local and cross-station data management scenarios to investigate the interrelations between the SSL values of upstream/downstream stations. The available scenarios were applied to predict SSL values using GEP to obtain the best models. Then, the best models were predicted by SVM approach and the obtained results were compared with those of GEP. The comparison of the results revealed that the SVM technique is more capable than the GEP for modeling the SSL through the both local and cross-station data management strategies. Besides, local application seems to be better than cross-station application for modeling SSL. Nevertheless, the cross-station application demonstrated to be a valid methodology for simulating SSL, which would be of interest for the stations with lack of observational data. Also, the prediction capability of conventional Sediment Rating Curve (SRC) method was compared with those of GEP and SVM techniques. The obtained results revealed the superiority of GEP and SVM-based models over the traditional SRC technique in the studied stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alp M, Cigizoglu HK (2007) Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modeling & Software 22(1): 2–13. DOI: 10.1016/j.envsoft.2005.09.009

    Article  Google Scholar 

  • Asselman NEM (2000) Fitting and interpretation of sediment rating curves. Journal of Hydrology 234(3): 228–248. DOI: 10.1016/S0022-1694(00)00253-5

    Article  Google Scholar 

  • Aytek A, Kisi Ö (2008) A genetic programming approach to suspended sediment modeling. Journal of Hydrology 351(3): 288–298. DOI: 10.1016/j.jhydrol.2007.12.005

    Article  Google Scholar 

  • Azamathulla HM, Ghani AA, Chang CK, et al. (2010) Machine learning approach to predict sediment load–a case study. CLEAN–Soil, Air, Water 38(10): 969–976. DOI: 10.1002/clen. 201000068

    Article  Google Scholar 

  • Azamathulla HM, Ghani AA, Leow CS, et al. (2011) Geneexpression programming for the development of a stagedischarge curve of the Pahang River. Water Resources Management 25(11): 2901–2916. DOI: 10.1007/s11269-011-9845-7

    Article  Google Scholar 

  • Basak D, Pal S, Patranabis DC (2007) Support Vector Regression. Neural Information Processing-Letters and Reveiews 11(10): 203–224.

    Google Scholar 

  • Chiang JL, Tsai YS (2011) Suspended sediment load estimate using support vector machines in Kaoping river basin. In Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on (pp. 1750–1753). IEEE. DOI: 10.1109/CECNET.2011.5769267

    Chapter  Google Scholar 

  • Cohn TA, Caulder DL, Gilroy EJ, et al. (1992) The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering Chesapeake Bay. Water Resources Research 28(9): 2353–2363. DOI: 10.1029/92WR01008

    Article  Google Scholar 

  • Crowder DW, Demissie M, Markus M (2007) The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships. Journal of Hydrology 336(3): 250–268. DOI: 10.1016/j.jhydrol.2006.12.024

    Article  Google Scholar 

  • Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13 (2): 87–129. DOI: 10.1016/j.jhydrol.2006.12.024

    Google Scholar 

  • Ferreira C (2006) Gene expression programming: mathematical Modeling by an artificial intelligence. Springer, Berlin, Heidelberg, New York, p. 478.

    Google Scholar 

  • Forman SL, Pierson J, Lepper K (2000) Luminescence geochronology. Quaternary geochronology: Methods and applications: 157–176.

    Book  Google Scholar 

  • Gunn SR (1998) Support vector machines for classification and regression. ISIS technical report, 14.

    Google Scholar 

  • Lafdani EK, Nia AM, Ahmadi A (2013) Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology 478: 50–62. DOI: 10.1016/j.jhydrol.2012.11.048

    Article  Google Scholar 

  • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly stream flow forecasting. Journal of Hydrology 399(1): 132–140. DOI: 10.1016/j. jhydrol.2010.12.041

    Article  Google Scholar 

  • Kisi O, Shiri J (2011) Precipitation forecasting using waveletgenetic programming and wavelet-neuro-fuzzy conjunction models. Water Resources Management 25(13): 3135–3152. DOI: 10.1007/s11269-011-9849-3

    Article  Google Scholar 

  • Kisi O (2012) Modeling discharge-suspended sediment relationship using least square support vector machine. Journal of Hydrology 456: 110–120. DOI: 10.1016/j.jhydrol.2012.06.019

    Article  Google Scholar 

  • Kisi O, Dailr AH, Cimen M, et al. (2012) Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology 450: 48–58. DOI: 10.1016/j.jhydrol.2012.05.031

    Article  Google Scholar 

  • Kisi O, Shiri J (2012) River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques. Computers & Geosciences 43: 73–82. DOI: 10.1016/j.cageo.2012.02.007

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodnessof-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233–241. DOI: 10.1029/1998WR900018

    Article  Google Scholar 

  • Liu QJ, Shi ZH, Fang NF, et al. (2013) Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet–ANN approach. Geomorphology 186: 181–190. DOI: 10.1016/j.geomorph.2013.01.012

    Article  Google Scholar 

  • Nash J, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology 10(3): 282–290. DOI: 10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Overleir A.P (2004) Accounting for heteroscedasticity in rating curve estimates. Journal of Hydrology 292(1): 173–181. DOI: 10.1016/j.jhydrol.2003.12.024

    Article  Google Scholar 

  • Partal T, Cigizoglu HK (2008) Estimation and forecasting of daily suspended sediment data using wavelet–neural networks. Journal of Hydrology 358(3): 317–331. DOI: 10.1016/j.jhydrol.2008.06.013

    Article  Google Scholar 

  • Picouet C, Hingray B, Olivry JC (2001) Empirical and conceptual modeling of the suspended sediment dynamics in a large tropical African river: the Upper Niger river basin. Journal of Hydrology 250(1): 19–39. DOI: 10.1016/S0022-1694(01)00407-3

    Article  Google Scholar 

  • Roushangar K, Mehrabani FV, Shiri J (2014a) Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs). Journal of Hydrology 514: 114–122. DOI: 10.1016/j.jhydrol.2014.03.065

    Article  Google Scholar 

  • Roushangar K, Mouaze D, Shiri J (2014b) Evaluation of genetic programming-based models for simulating friction factor in alluvial channels. Journal of Hydrology 517: 1154–1161. DOI: 10.1016/j.jhydrol.2014.06.047

    Article  Google Scholar 

  • Roushangar K, Koosheh A (2015) Evaluation of GA-SVR method for modeling bed load transport in gravel-bed rivers. Journal of Hydrology 527: 1142–1152. DOI: 10.1016/j.jhydrol.2015.06. 006

    Article  Google Scholar 

  • Shiri J, KisI Ö (2011) Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computers & Geosciences 37(10): 1692–1701. DOI: 10.1016/j.cageo.2010.11.010

    Article  Google Scholar 

  • Shiri J, Kisi O (2012) Estimation of daily suspended sediment load by using wavelet conjunction models. Journal of Hydrologic Engineering 17(9): 986–1000. DOI: 10.1061/(ASCE)HE.1943-5584.0000535

    Article  Google Scholar 

  • Shiri J, Sadraddini AA, Nazemi AH, et al. (2013) Evaluation of different data management scenarios for estimating daily reference evapotranspiration. Hydrology Research 44(6): 1058–1070. DOI: 10.2166/nh.2013.154

    Article  Google Scholar 

  • Shiri J, Marti P, Singh VP (2014) Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning. Hydrological Processes 28(3): 1215–1225. DOI: 10.1002/hyp.9669

    Article  Google Scholar 

  • Singh VP, Krstanovic PF, Lane L J (1988) Stochastic models of sediment yield. Modeling Geomorphological Systems. John Wiley and Sons New York. 1988. p 259–285, 7 fig, 3 tab, 64 ref.

    Google Scholar 

  • Vapnik VN (1998) Statistical Learning Theory. Wiley, New York. p 768.

    Google Scholar 

  • Walling DE (1977) Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research 13(3): 531–538. DOI: 10.1029/WR013i003p00531

    Article  Google Scholar 

  • Yang CT (1996) Sediment Transport: Theory and Practice. McGraw-Hill, New York; Singapore. p 396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoumars Roushangar.

Additional information

http://orcid.org/0000-0002-2620-5106

http://orcid.org/0000-0002-7177-1879

http://orcid.org/0000-0002-5726-7924

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushangar, K., Hosseinzadeh, S. & Shiri, J. Local vs. cross station simulation of suspended sediment load in successive hydrometric stations: heuristic modeling approach. J. Mt. Sci. 13, 1773–1788 (2016). https://doi.org/10.1007/s11629-015-3726-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3726-0

Keywords

Navigation