Journal of Mountain Science

, Volume 13, Issue 7, pp 1186–1199 | Cite as

Spatial and temporal variation of drought index in a typical steep alpine terrain in Hengduan Mountains

  • Gno-feng Zhu
  • Ling Yang
  • Da-he Qin
  • Hua-li Tong
  • Yuan-feng Liu
  • Jia-fang Li


This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typically used to determine the moisture conditions and the magnitude of water deficiency in a given area. Based on data from 26 meteorological stations over the period 1960-2012, the spatial and temporal variations of the drought index were analyzed using a thin plate smoothing splines method that considered elevation as a covariate. The drought index was estimated based on the potential evapotranspiration (E0) as defined by the Penman Monteith model modified by FAO (1998). The results of the reported analysis showed that the drought index in the Hengduan Mountains has been decreasing since 1960 at a rate of -0.008/a. This represented a progressive shift from the "sub-humid" class, which typified the wider area in the Hengduan Mountains, toward the "humid" class, which appeared in the Hengduan Mountains areas. The drought index was relatively high in the north and low in the south and the variation of the drought index varied with seasons. The drought index showed increasing trends in summer and autumn and it is greater in autumn than in summer, while it showed a decreasing trend in spring and winter. Drought index is inversely proportional to the soil relative humidity and Normalized Difference Vegetation Index (NDVI).


Drought index Normalized Difference Vegetation Index Evapotranspiration Thin plate smoothing splines Hengduan Mountains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas S, Nichol JE, Qamer FM, et al. (2014) Characterisation of drought development through remote sensing; a case study in Central Yunnan, China. Remote Sensing 6(6): 4998–5018. DOI: 10.3390/rs6064998CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, et al. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organisation of the United Nations, Rome, Italy.Google Scholar
  3. Asner GP, Alencar A (2010) Drought Impacts on the Amazon Forest: The Remote Sensing Perspective. New phytologist 187(3): 569–78. DOI: 10.1111/j.1469-8137.2010.03310.xCrossRefGoogle Scholar
  4. Bárdossy A, Lehmann W (1998) Spatial distribution of soil moisture in a small catchment. Part I: geostatistical analysis. Journal of Hydrology 206(1–2): 1–15. DOI: 10.1016/S0022-1694(97)00152-2CrossRefGoogle Scholar
  5. Bhuiyan C, Singh R, Kogan F (2006) Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation & Geoinformation 8(4): 289–302. DOI: 10.1016/j.jag.2006.03.002CrossRefGoogle Scholar
  6. Cai G, Du M, Liu Y (2011) Regional Drought Monitoring and Analysing Using MODIS Data-A Case Study in Yunnan Province. Ifip Advances in Information & Communication Technology 2010(345): 243–251. DOI: 10.1007/978-3-642-18336-2-29CrossRefGoogle Scholar
  7. Chen X, Alimohammadi N, Wang D (2013) Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resources Research 49(9): 6067–6078. DOI: 10.1002/wrcr.20493.CrossRefGoogle Scholar
  8. Christel P, Ignazio G, Robinson EL, et al. (2013) Hydrological Droughts in the 21st Century, Hotspots and Uncertainties from a Global Multimodel Ensemble Experiment. In: Proceedings of the National Academy of Sciences of the United States of America 111(9): 3262–3267. DOI: 10.1073/pnas.1222473110Google Scholar
  9. Cook ER, Seager R, Cane MA, et al. (2007) North American Drought: Reconstructions, Causes, and Consequences. Earth Science Reviews 81(s 1-2): 93–134. DOI: 10.1016/j.earscirev.2006.12.002CrossRefGoogle Scholar
  10. Crave A, Gascuel-odux C (1997) The influence of topography on the time and space distribution of soil surface water content. Hydrological Processes 11(2): 203–210. DOI: 10.1002/(sici)1099-1085(199702)11:2<203::aid-hyp432>;2-bCrossRefGoogle Scholar
  11. Craven P, Wahba G (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numerische Mathematik 31(31): 377–403. DOI: 10.1007/bf01404567Google Scholar
  12. Dai AE (2012) Drought under global warming: a review. Wiley Interdisciplinary Reviews Climate Change 3(1): 617–617. DOI: 10.1002/wcc.190CrossRefGoogle Scholar
  13. Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870-2002: relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5(6): 1117–1130. DOI: 10.1175/JHM-386.1CrossRefGoogle Scholar
  14. Djebou DS, Singh VP, Frauenfeld OW (2015a) Vegetation response to precipitation across the aridity gradient of the southwestern united states. Journal of Arid Environments 115(6): 35–43. DOI: 10.1016/j.jaridenv.2015.01.005CrossRefGoogle Scholar
  15. Djebou DS, Singh VP (2015b) Retrieving vegetation growth patterns from soil moisture, precipitation and temperature using maximum entropy. Ecological Modelling 309: 10–21. DOI: 10.1016/j.ecolmodel.2015.03.022CrossRefGoogle Scholar
  16. Djebou DS, Singh VP, Frauenfeld OW (2014) Analysis of watershed topography effects on summer precipitation variability in the southwestern United States. Journal of Hydrology 511(7): 838–849. DOI: 10.1016/j.jhydrol.2014.02.045CrossRefGoogle Scholar
  17. Donohue RJ, Roderick ML, McVicar TR (2010a) Can dynamic vegetation information improve the accuracy of Budyko's hydrological model. Journal of Hydrology 390(1–2): 23–34. DOI: 10.1016/j.jhydrol.2010.06.025CrossRefGoogle Scholar
  18. Donohue RJ, McVicar TR, Roderick ML (2010b) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology 386(1–4): 186–197. DOI: 10.1016/j.jhydrol.2010.03.020CrossRefGoogle Scholar
  19. Duchon J (1977) Splines minimizing rotation-invariant seminorms in Sobolev spaces. Constructive Theory of Functions of Several Variables Lecture Notes in Mathematics 571: 85–100. DOI: 10.1007/bfb0086566CrossRefGoogle Scholar
  20. Du L, Tian Q, Yu T, et al. (2013) A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation 23(8): 245–53. DOI: 10.1016/j.jag.2012.09.010CrossRefGoogle Scholar
  21. Eagleson PS (1978) Climate, soil, and vegetation 4. Expected value of annual evapotranspiration, Water Resourse Reseach 14(5): 731–739. DOI: 10.1029/wr014i005p00731CrossRefGoogle Scholar
  22. Edwards EJ, Osborne CP, Stromberg CA (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328(5978): 587–591. DOI: 10.1126/science.1177216CrossRefGoogle Scholar
  23. Fan ZX, Brauning A, Cao KF, et al. (2009) Growth-Climate Responses of High-Elevation Conifers in the Central Hengduan Mountains, Southwestern China. Forest Ecology and Management 258(3): 306–313. DOI: 10.1016/j.foreco.2009.04.017CrossRefGoogle Scholar
  24. Farrar TJ, Nicholson SE, Lare AR (1994) The influence of soil type on the relation-ships between NDVI, rainfall, and soil moisture in semiarid Botswana: I. NDVI response to soil moisture. Remote Sensing of Environment 50(2): 121–133. DOI: 10.1016/0034-4257(94)90038-8CrossRefGoogle Scholar
  25. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change 62(3–4): 195–209. DOI: 10.1016/j.gloplacha.2008.02.002CrossRefGoogle Scholar
  26. Gentine P, D'Odorico P, Lintner BR, et al. (2012) Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophysical Research Letters 39(19): L19404. DOI: 10.1029/2012gl053492CrossRefGoogle Scholar
  27. Ghulam A, Qin Q, Kusky TM, et al. (2008) A re-examination of perpendicular drought indices. International Journal of Remote Sensing 29(20): 6037–6044. DOI: 10.1080/01431160802235811CrossRefGoogle Scholar
  28. Gopalkrishna HR, Thiruvengadachari S (1993) Satellite derived regional vegetation dynamics over India as possible inputs to global climate models. Geoscience and Remote Sensing Symposium, IGARSS '93. Better Understanding of Earth Environment, International IEEE 4: 2059–2061. DOI: 10.1109/igarss.1993.322351CrossRefGoogle Scholar
  29. Goovaerts P (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, USA.Google Scholar
  30. Gu SX (2011) The study on the relationship between land use and soil erosion in the Hengduan Mountainous region of the Eastern Tibet. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, pp 902–905. DOI: 10.1109/rsete.2011.5964424Google Scholar
  31. Hamed KH (2009) Exact distribution of the Mann-Kendall trend test statistic for persistent data. Journal of Hydrology 365(1): 86–94. DOI: 10.1016/j.jhydrol.2008.11.024CrossRefGoogle Scholar
  32. Hayes M, Wilhite DA, Svoboda M, et al. (1999) Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80(3): 429–438. DOI: 10.1175/1520-0477(1999)080<0429:mtduts>2.0. co;2CrossRefGoogle Scholar
  33. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society 83(8): 1149–1165. DOI: 10.1175/1520-0477(2002)083<1149:arotdi>;2CrossRefGoogle Scholar
  34. Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing 7(11): 1417–1434. DOI: 10.1080/01431168608948945CrossRefGoogle Scholar
  35. Hollinger SE, Isard SA, Welford MR (1993) A new soil moisture drought index forpredicting crop yields. In: Eighth Conference on Applied Climatology, Preprints. pp 187–190.Google Scholar
  36. Hossein T, Hosseinzadeh PT (2013) Moisture index for Iran: Spatial and temporal analyses. Global and Planetary Change 100(1): 11–19. DOI: 10.1016/j.gloplacha.2012.08.010Google Scholar
  37. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, et al. (Eds.), Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1132. DOI: 10.1017/cbo9781107415379Google Scholar
  38. Jain SK, Keshri R, Goswami A, et al. (2009) Identification of drought-vulnerable areas using NOAA AVHRR data. International Journal of Remote Sensing 30(10): 2653–2668. DOI: 10.1080/01431160802555788CrossRefGoogle Scholar
  39. Jensen ME, Burman RD, Allen RG (1990) Evaporation and Irrigation Water Requirements. In: American Society of Civil Engineering Manual No. 70.Google Scholar
  40. Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment 87(1): 85–98. DOI: 10.1016/s0034-4257(03)00174-3CrossRefGoogle Scholar
  41. Jia WX, He YQ, Wang XF (2009) Temporal and spatial change of the potential evaporation over Qilian Mountains and Hexi Corridor from 1960 to 2006. Advance in Water Science 20(2): 159–167. (In Chinese)Google Scholar
  42. Justin S, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424): 435–438. DOI: 10.1038/nature11575CrossRefGoogle Scholar
  43. Kendall MG, Gibbons JD (1990) Rank Correlation Methods, fifthed. Griffin, London, UK.Google Scholar
  44. Kogan FN (1995a) Application of vegetation index and brightness temperature for drought detection. Advances in Space Research 15(11): 91–100. DOI: 10.1007/s11269-014-0576-4CrossRefGoogle Scholar
  45. Kogan FN (1995b) Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Mathematical Society 76(5): 655–668. DOI: 10.1175/1520-0477(1995)076<0655:dotlit>;2CrossRefGoogle Scholar
  46. Kogan FN (1997) Global drought watch from space. Bulletin of the American Mathematical Society 78(4): 621–636. DOI: 10.1016/s0273-1177(97)00883-1CrossRefGoogle Scholar
  47. Li JJ, Su Z (1996) Glaciers in the Hengduanshan. Science Press, Beijing, China. (In Chinese)Google Scholar
  48. Liu SQ, Wendy DG, Jennifer MJ (2005) Daily potential evapotranspiration and diurnal climate forcings: influence on the numerical modelling of soil water dynamics and evapotranspiration. Journal of Hydrology 309(1–4): 39–52. DOI: 10.1016/j.jhydrol.2004.11.009CrossRefGoogle Scholar
  49. Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. International Journal of Remote Sensing 25(1): 9–14. DOI: 10.1080/0143116031000115265CrossRefGoogle Scholar
  50. Mann HB (1945) Nonparametric tests against trend. Econometrica 13(13): 245–259. DOI: 10.2307/1907187CrossRefGoogle Scholar
  51. McKee TB, Doesken NJ, Kleis J (1993) The relationship of drought frequency and duration to time scales. Preprints, Eighth Conference on Applied Climatology. American Meteorological Society, Anaheim, CA, USA. pp 179–184.Google Scholar
  52. Mendicino G, Senatore A, Versace P (2008) A groundwater resource index (GRI) for drought monitoring and forecasting in a mediterranean climate. Journal of Hydrology 357(s 3–4): 282–302. DOI: 10.1016/j.jhydrol.2008.05.005CrossRefGoogle Scholar
  53. Nichol JE, Abbas S (2015) Integration of remote sensing datasets for local scale assessment and prediction of drought. Science of the Total Environment 505: 503–507. DOI: 10.1016/j.scitotenv.2014.09.099CrossRefGoogle Scholar
  54. Nyberg L (1996) Spatial variability of soil water content in the covered catchment at Gârdsjon, Sweden. Hydrological Processes 10(1): 89–103. DOI: 10.1002/(sici)1099-1085(199601)10:1<89::aid-hyp303>3.0.oe;2-wCrossRefGoogle Scholar
  55. Palmer W (1965) Meteorological Drought. Research Paper No. 45. US Weather Bureau, Washington, DC, USA. p. 58.Google Scholar
  56. Paltineanu C, Mihailescu IF, Seceleanu I (2007) Using aridity indices to describe some climate and soil features in Eastern Europe: a Romanian case study. Theoretical and Applied Climatology 90(90): 263–274. DOI: 10.1007/s00704-007-0295-3CrossRefGoogle Scholar
  57. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London 193(193): 120–145. DOI: 10.1098/rspa.1948.0037CrossRefGoogle Scholar
  58. Peters WS (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering & Remote Sensing 68(1): 71–76.Google Scholar
  59. Pu J (1994) The Changjiang River drainage basin. In: Glacier Inventory of China, Vol.8. Gansu Culture Press, Lanzhou, China. pp 117–129. (In Chinese)Google Scholar
  60. Qin NX, Chen X, Fu GB, et al. (2010) Precipitation and temperature trends for the Southwest China: 1960-2007. Hydrological Processes 24(25): 3733–3744. DOI: 10.1002/hyp.7792CrossRefGoogle Scholar
  61. Quiring SM, Papakryiakou TN (2003) An evaluation of agricultural drought indices for the Canadian prairies. Agricultural & Forest Meteorology 118(3): 49–62. DOI: 10.1016/s0168-1923(03)00072-8CrossRefGoogle Scholar
  62. Rahman H, Dedieu G (1994) SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. International Journal of Remote Sensing 15(1): 123–143. DOI: 10.1080/01431169408954055CrossRefGoogle Scholar
  63. Rakhecha PR, Dhar ON (1976) A Study of Aridity and its Fluctuations over Andhra Pradesh//Proc. Proceedings of the National Academy of Sciences of the United States of America 42: 195–202.Google Scholar
  64. Richard S, Mingfang T, Isaac H, et al. (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828): 1181–1184. DOI: 10.1126/science.1139601CrossRefGoogle Scholar
  65. Rouse JW, Haas RH, Schell JA, et al. (1974) Monitoring vegetation systems in the Great Plains with ERTS. Nasa Special Publication 351: 309.Google Scholar
  66. Schoenberg IJ (1964) Spline functions and the problem of graduation. Proceedings of the National Academy of Sciences of the United States of America 52(4): 947–500. DOI: 10.1007/978-1-4899-0433-1_8CrossRefGoogle Scholar
  67. Wahba G (1990) Spline Models for Observational Data, CBMSNSF Regional Conference Series in Applied Mathematics, Watson Research Center, Watson, USA.CrossRefGoogle Scholar
  68. Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Climate Dynamics 25(7–8): 739–753. DOI: 10.1007/s00382-005-0057-9CrossRefGoogle Scholar
  69. Western AW, Bloschl G, Grayson RB (1998) Geostatistical characteristics of soil moisture patterns in the Tarrawarra catchment. Journal of Hydrology 205(s 1–2): 20–37. DOI: 10.1016/s0022-1694(97)00142-xCrossRefGoogle Scholar
  70. Western AW, Grayson RB, Bloschl G, et al. (1999) Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research 35(3): 797–810. DOI: 10.1029/1998wr900065CrossRefGoogle Scholar
  71. Yamamoto JK (2005) Correcting the smooth effect of ordinary Kriging estimates. Mathematical Geology 37(11), 69–94. DOI: 10.6010/geoinformatics.12.148CrossRefGoogle Scholar
  72. Yamamoto JK (2007) On unbiased back transform of lognormal kriging estimates. Computational Geosciences 11(3): 219–234. DOI: 10.1007/s10596-007-9046-xCrossRefGoogle Scholar
  73. Yang LM, Wylie BK, Tieszen LL, et al. (1998) An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the US northern and central Great Plains. Remote Sensing Of Environment 65(1): 25–37. DOI: 10.1016/s0034-4257(98)00012-1CrossRefGoogle Scholar
  74. Yang H, Yang D, Lei Z, et al. (2008) New analytical derivation of the mean annual water-energy balance equation. Water Resources Research 44(3): 893–897. DOI: 10.1029/2007wr006135CrossRefGoogle Scholar
  75. Young PC, Pedregal D (1999) Recursive and en-bloc approaches to signal extraction. Journal of Applied Statistics 26(1): 103–128. DOI: 10.1080/02664769922692CrossRefGoogle Scholar
  76. Zhang DC, Boufford DE, Ree RH, et al. (2009) The 29°N latitudinal line: an important division in the Hengduan Mountains, a biodiversity hotspot in southwest China. Nordic Journal of Botany 27(5): 405–412(8). DOI: 10.1111/j.1756-1051.2008.00235.xCrossRefGoogle Scholar
  77. Zhu G, He Y, Pu T, et al. (2012) Spatial distribution and temporal trends in potential evapotranspiration over Hengduan Mountains region from 1960 to 2009. Journal of Geographic Sciences 22(1): 71–85. DOI: 10.1007/s11442-012-0912-7CrossRefGoogle Scholar
  78. Zhu G, Shi P, Pu T, et al. (2013) Changes of surface soil relative moisture content in Hengduan Mountains, China, during 1992-2010. Quaternary International 298(7): 161–170. DOI: 10.1016/j.quaint.2013.01.012Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gno-feng Zhu
    • 1
    • 2
  • Ling Yang
    • 1
  • Da-he Qin
    • 2
  • Hua-li Tong
    • 1
  • Yuan-feng Liu
    • 1
  • Jia-fang Li
    • 1
  1. 1.College of Geography and Environment ScienceNorthwest Normal UniversityLanzhouChina
  2. 2.State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations