Advertisement

Journal of Mountain Science

, Volume 13, Issue 1, pp 13–28 | Cite as

Response of Xiao Dongkemadi Glacier in the central Tibetan Plateau to the current climate change and future scenarios by 2050

  • Pei-hong ShiEmail author
  • Ke-qin DuanEmail author
  • Huan-cai Liu
  • Jun-hua Yang
  • Xiao Zhang
  • Jian-yong Sun
Article

Abstract

The Tibetan Plateau (TP) holds ten thousands of alpine glaciers in mid-latitude. They have shrunk with an accelerating retreat rate recently. We applied a distributed temperature-index massbalance model developed by Regine Hock, and coupled with a volume-area scaling method to Xiao Dongkemadi Glacier (XDG) in the central TP, to assess its response to climate change. The result shows the simulated mass balance is in a good agreement with observations (R 2=0.75, p<0.001) during the period of 1989-2012. The simulated mean annual mass balance (-213 mm w.e.) is close to the observation (-233 mm w.e.), indicating the model can be used to estimate the glacier variation in the future. Then the model was forced by the output of RegCM4 under the climate scenarios RCP4.5 and RCP8.5 from 2013 to 2050. The simulated terminus elevation of the glacier will rise from 5454 m a.s.l. in 2013 to 5533 m a.s.l. (RCP4.5) and 5543 m a.s.l. (RCP8.5) in 2050. XDG will lose its volume with an increasing rate of 600-700 m3 a-1 during the period of 1989-2050, indicating the melting water will enhance the river runoff. But for the long term, the contribution to the river runoff will decrease for the shrinkage of glacier scale.

Keywords

Xiao Dongkemadi Glacier Numerical simulation Climate change Mass balance Temperature-index model Volume-Area scaling method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageta Y, Seko K, Fujita K, et al. (1997) Some aspects of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Mountains on the Tibetan Plateau, 1989-1994. Journal of Glaciology and Geocryology 19 (Special Issue): 68–72.Google Scholar
  2. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. Journal of Geophysical Research 102 (B9): 20355. DOI: 10.1029/97JB01696CrossRefGoogle Scholar
  3. Bolch T, Kulkarni A, Kaab A, et al. (2012) The state and fate of Himalayan glaciers. Science 336 (6079): 310–314. DOI: 10.1126/science.1215828CrossRefGoogle Scholar
  4. Bonanno R, Ronchi C, Cagnazzi B, et al. (2014) Glacier response to current climate change and future scenarios in the northwestern Italian Alps. Regional Environmental Change 14 (2): 633–643. DOI: 10.1007/s10113-013-0523-6CrossRefGoogle Scholar
  5. Chen J, Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870s. IAHS Publ 193: 127–135.Google Scholar
  6. Das I, Hock R, Berthier E, et al. (2014) 21st-century increase in glacier mass loss in the Wrangell Mountains, Alaska, USA, from airborne laser altimetry and satellite stereo imagery. Journal of Glaciology 60 (220): 283–293. DOI: 10.3189/2014JoG13J119CrossRefGoogle Scholar
  7. de Woul M, Hock R, Braun M, et al. (2006) Firn layer impact on glacial runoff: a case study at Hofsjökull, Iceland. Hydrological Processes 20 (10): 2171–2185. DOI: 10.1002/hyp.6201CrossRefGoogle Scholar
  8. Ebnet A F, Fountain AG, Nylen TH, et al. (2005) A temperatureindex model of stream flow at below-freezing temperatures in Taylor Valley, Antarctica. Annals of Glaciology 40 (1): 76–82. DOI: 10.3189/172756405781813519CrossRefGoogle Scholar
  9. Fujita K, Ageta Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by massbalance model. Journal of Glaciology 46 (153): 244–252. DOI: 10.3189/172756500781832945CrossRefGoogle Scholar
  10. Fujita K, Ageta Y, Jianchen P, et al. (2000) Mass balance of Xiao Dongkemadi glacier on the central Tibetan Plateau from 1989 to 1995. Annals of Glaciology 31 (1): 159–163. DOI: 10.3189/172756400781820075CrossRefGoogle Scholar
  11. Fujita K, Ohta T, Ageta Y (2007) Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau. Hydrological Processes 21 (21): 2882–2891. DOI: 10.1002/hyp.6505CrossRefGoogle Scholar
  12. Fujita K, Seko K, Ageta Y, et al. (1996) Superimposed ice in glacier mass balance on the Tibetan Plateau. Journal of Glaciology 42 (142): 454–460.Google Scholar
  13. Gao H, He X, Ye B, et al. (2012a) Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008. Hydrological Processes 26 (11): 1593–1603. DOI: 10.1002/hyp.8256CrossRefGoogle Scholar
  14. Gao X, Shi Y, Zhang D, et al. (2012b) Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chinese Science Bulletin 57 (10): 1188–1195. DOI: 10.1007/s11434-011-4935-8CrossRefGoogle Scholar
  15. Gardner AS, Moholdt G, Cogley JG, et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340 (6134): 852–857. DOI: 10.1126/science. 1234532CrossRefGoogle Scholar
  16. Garnier B, Ohmura A (1968) A method of calculating the direct shortwave radiation income of slopes. Journal of Applied Meteorology 7 (5): 796–800. DOI: 10.1175/1520-0450(1968) 007<0796:AMOCTD>2.0.CO;2CrossRefGoogle Scholar
  17. Giorgi F, Coppola E, Solmon F, et al. (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research 52 (129): 7–29. DOI: 10.3354/cr01018CrossRefGoogle Scholar
  18. Gobiet A, Kotlarski S, Beniston M, et al. (2014) 21st century climate change in the European Alps—a review. Science of the Total Environment 493 (0): 1138–1151. DOI: 10.1016/j.scitotenv.2013.07.050CrossRefGoogle Scholar
  19. Grinsted A (2013) An estimate of global glacier volume. The Cryosphere 7 (1): 141–151. DOI: 10.5194/tc-7-141-2013CrossRefGoogle Scholar
  20. He X, Du JK, Ji Y, et al. (2010) Characteristics of DDF at Baishui glacier No. 1 region in Yulong Snow Mountain. Journal of Earth Science 21 (2): 148–156. DOI:10.1007/s12583-010-0013-4CrossRefGoogle Scholar
  21. Hock R (1999) A distributed temperature-index ice-and snowmelt model including potential direct solar radiation. Journal of Glaciology 45 (149): 101–111.Google Scholar
  22. Hock R (2003) Temperature index melt modelling in mountain areas. Journal of Hydrology 282 (1-4): 104–115. DOI: 10.1016/S0022-1694(03)00257-9CrossRefGoogle Scholar
  23. Hock R (2005) Glacier melt: a review of processes and their modelling. Progress in Physical Geography 29 (3): 362–391. DOI: 10.1191/0309133305pp453raCrossRefGoogle Scholar
  24. Hock R, Radic V, de Woul M (2007) Climate sensitivity of Storglaciaren, Sweden: an intercomparison of mass-balance models using ERA-40 re-analysis and regional climate model data. Annals of glaciology 46 (1): 342–348. DOI: 10.3189/172756407782871503CrossRefGoogle Scholar
  25. Huss M, Bauder A, Funk M, et al. (2008) Determination of the seasonal mass balance of four Alpine glaciers since 1865. Journal of Geophysical Research: Earth Surface 113 (F1): F1015. DOI: 10.1029/2007JF000803CrossRefGoogle Scholar
  26. Huss M, Zemp M, Joerg PC, et al. (2014) High uncertainty in 21st century runoff projections from glacierized basins. Journal of Hydrology 510 (0): 35–48. DOI: 10.1016/j.jhydrol. 2013.12.017CrossRefGoogle Scholar
  27. Jacob T, Wahr J, Pfeffer WT, et al. (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482 (7386): 514–518. DOI: 10.1038/nature10847CrossRefGoogle Scholar
  28. Jiang X, Wang N, He J, et al. (2010) A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chinese Science Bulletin 55 (20): 2079–2087. DOI: 10.1007/s11434-010-3068-9CrossRefGoogle Scholar
  29. Kang E, Cheng G, Lan Y, et al. (1999) A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes. Science in China Series D: Earth Sciences 42 (1 Supplement): 52–63. DOI: 10.1007/BF02878853CrossRefGoogle Scholar
  30. Kayastha RB, Ageta Y, Nakawo M, et al. (2003) Positive degreeday factors for ice ablation on four glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau. Bulletin of glaciological research 20: 7–14.Google Scholar
  31. Li K, Li Z, Gao W, et al. (2011) Recent glacial retreat and its effect on water resources in eastern Xinjiang. Chinese Science Bulletin 56(33): 3596–3604. DOI: 10.1007/s11434-011-4720-8CrossRefGoogle Scholar
  32. Marzeion B, Jarosch A, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere 6 (6): 1295–1322. DOI: 10.5194/tc-6-1295-2012CrossRefGoogle Scholar
  33. Meehl GA, Stocker T, Collins WD, et al. (2007) Global climate projections. In: Solomon D et al. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 747–845.Google Scholar
  34. Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change 4 (1): 68–73. DOI: 10.1038/NCLIMATE2055CrossRefGoogle Scholar
  35. Pu J, Yao T, Yang M, et al. (2008) Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydrological Processes 22 (16): 2953–2958. DOI: 10.1002/hyp.6865CrossRefGoogle Scholar
  36. Pu J, Yao T, Zhang Y, et al. (1995) Mass Balance on the Dongkemadi and Meikuang Glaciers in 1992/1993. Journal of Glaciology and Geocryology 17 (2): 138–143. (In Chinese)Google Scholar
  37. Radi V, Bliss A, Beedlow AC, et al. (2014) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics 42 (1-2): 37–58. DOI: 10.1007/s00382-013-1719-7CrossRefGoogle Scholar
  38. Radic V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research: Earth Surface 115(F1): F1010. DOI: 10.1029/2009JF001373CrossRefGoogle Scholar
  39. Radic V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience 4 (2): 91–94. DOI: 10.1038/ngeo1052CrossRefGoogle Scholar
  40. Radic V, Hock R, Oerlemans J (2007) Volume-area scaling vsflowline modelling in glacier volume projections. Annals of Glaciology 46: 234–240. DOI: 10.3189/172756407782871288CrossRefGoogle Scholar
  41. Radic V, Hock R, Oerlemans J (2008) Analysis of scaling methods in deriving future volume evolutions of valley glaciers. Journal of Glaciology 54 (187): 601–612. DOI: 10.3189/002214308786570809CrossRefGoogle Scholar
  42. Ren J, Ye B, Ding Y, et al. (2011) Initial estimate of the contribution of Cryospheric change in China to sea level rise. Chinese Science Bulletin 56 (16): 1661–1664. DOI: 10.1007/s11434-011-4474-3CrossRefGoogle Scholar
  43. Salathé EP (2005) Downscaling simulations of future global climate with application to hydrologic modelling. International Journal of Climatology 25 (4):419–436. DOI: 10.1002/joc.1125CrossRefGoogle Scholar
  44. Schneeberger C, Albrecht OB, Alatter H, et al. (2001) Modelling the response of glaciers to a doubling in atmospheric CO2: a case study of Storglaciären, northern Sweden. Climate Dynamics 17 (11): 825–834. DOI: 10.1007/s003820000147CrossRefGoogle Scholar
  45. Schneeberger C, Blatter H, Abe-Ouchi A, et al. (2003) Modelling changes in the mass balance of glaciers of the northern hemisphere for a transient 2×CO2 scenario. Journal of Hydrology 282 (1-4): 145–163. DOI: 10.1016/S0022-1694(03)00260-9CrossRefGoogle Scholar
  46. Schuler TV, Loe E, Taurisano A, et al. (2007) Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard. Annals of Glaciology 46 (1): 241–248. DOI: 10.3189/17275 6407782871783CrossRefGoogle Scholar
  47. Seko K, Pu J, Koji F, et al. (1994) Glaciological observations in the Tanggula Mts., Tibetan Plateau. Bulletin of glacier research 12: 57–67.Google Scholar
  48. Shi Y, Liu S (2000) Estimation on the response of glaciers in China to the global warming in the 21st century. Chinese Science Bulletin 45 (7): 668–672. DOI: 10.1007/BF02886048CrossRefGoogle Scholar
  49. Singh P, Haritashya U, Kumar N (2008) Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas. Hydrological Sciences Journal 53 (2): 309–322. DOI: 10.1623/hysj.53.2.309CrossRefGoogle Scholar
  50. Sorg A, Bolch T, Stoffel M, et al. (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change 2 (10): 725–731. DOI: 10.1038/nclimate1592CrossRefGoogle Scholar
  51. Stocker T F, Qin D, Plattner G, et al. (2013) Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). Cambridge University Press, New York, USA. p 1552.Google Scholar
  52. Wang S, Pu J, Wang N (2011) Study of Mass Balance and Sensibility to Climate Change of Qiyi Glacier in Qilian Mountains. Journal of Glaciology and Geocryology 33 (6): 1214–1221. (In Chinese)Google Scholar
  53. Yang W, Guo X, Yao T, et al. (2011) Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. Journal of Geophysical Research 116 (D14): D14116. DOI: 10.1029/2010JD015183CrossRefGoogle Scholar
  54. Yao T, Pu J, Lu A, et al. (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan plateau, China, and surrounding regions. Arctic Antarctic and Alpine Research 39 (4): 642–650. DOI: 10.1657/1523-0430(07-510) [YAO]2.0.CO;2CrossRefGoogle Scholar
  55. Yao T, Thompson L, Yang W, et al. (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2 (9): 663–667. DOI: 10.1038/nclimate1580CrossRefGoogle Scholar
  56. Yao T, Zhang Y, Pu J, et al. (2011) Hydrological and climatological glaciers observation 20 years on Tanggula Pass of Tibetan Plateau: its significance and contribution. Sciences in Cold and Arid Regions 3 (03): 187–196. DOI: 10.3724/SP.J.1226.2011.00187Google Scholar
  57. Zhang J, He X, Ye B, et al. (2013) Recent Variation of Mass Balance of the Xiao Dongkemadi Glacier in the Tanggula Range and Its Influencing Factors. Journal of Glaciology and Geocryology 35 (2): 263–271. DOI: 10.7522/j.issn.1000-0240.2013.0032 (In Chinese)Google Scholar
  58. Zhang Y, Fujita K, Ageta Y, et al. (1998) The response of glacier ELA to climate fluctuations on High-Asia. Bulletin of glacier Research (16): 1–11.Google Scholar
  59. Zhao L, Ding R, Moore J C (2014a) Glacier volume and area change by 2050 in high mountain Asia. Global and Planetary Change 122(0): 197–207. DOI: 10.1016/j.gloplacha.2014.08. 006CrossRefGoogle Scholar
  60. Zhao L, Tian L, Zwinger T, et al. (2014b) Numerical simulations of Gurenhekou glacier on the Tibetan Plateau. Journal of Glaciology 60 (219): 71–82. DOI: 10.3189/2014JoG13J126CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.College of Tourism and EnvironmentalShanxi Normal UniversityXianChina

Personalised recommendations