Advertisement

Journal of Mountain Science

, Volume 13, Issue 1, pp 83–94 | Cite as

Spatio-temporal variation of spring phenology in Tibetan Plateau and its linkage to climate change from 1982 to 2012

  • Ming-jun Ding
  • Lan-hui Li
  • Yong Nie
  • Qian Chen
  • Yi-li ZhangEmail author
Article

Abstract

The influence of climate change on vegetation phenology is a heated issue in current climate change study. We used GIMMS-3g NDVI data to detect the spatio-temporal dynamics of the start of the growing season (SGS) over the Tibetan Plateau (TP) from 1982 to 2012 and to analyze its relationship with temperature and precipitation. No significant trend was observed in the SGS at the regional scale during the study period (R 2 = 0.03, P = 0.352). However, there were three time periods (1982-1999, 1999-2008 and 2008-2012) with identifiable, distinctly different trends. Regions with a significant advancing trend were mainly scattered throughout the humid and semi-humid areas, whereas the regions with a significant delaying trend were mostly distributed throughout the semi-arid areas. Statistical analysis showed that the response of the SGS to climate change varies spatially. The SGS was significantly correlated with the spring temperature and the start of the thermal growth season (STGS) in the relatively humid area. With increasing aridity, the importance of the spring temperature for the SGS gradually decreased. However, the influences of precipitation and winter temperature on the SGS were complicated across the plateau.

Keywords

Spring phenology Spatial pattern Temporal variation Climate change Correlation Tibetan Plateau (TP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badeck FW, Bondeau A, Bottcher K, et al. (2004) Responses of spring phenology to climate change. New Phytologist 162(2): 295–309. DOI: 10.1111/j.1469-8137.2004.01059.xCrossRefGoogle Scholar
  2. Both C, Bouwhuis S, Lessells CM, et al. (2006) Climate change and population declines in a long-distance migratory bird. Nature 441(7089): 81–83. DOI: 10.1038/nature04539CrossRefGoogle Scholar
  3. Chen J, Jonsson P, Tamura M, et al. (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment 91(3-4): 332–344. DOI: 10.1016/j.rse.2004.03. 014CrossRefGoogle Scholar
  4. Churkina G, Schimel D, Braswell BH, et al. (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology 11(10): 1777–1787. DOI: 10.1111/j.1365-2486.2005.001012.xCrossRefGoogle Scholar
  5. Cleland EE, Chiariello NR, Loarie SR, et al. (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America 103(37): 13740–13744. DOI:10.1073/pnas.0600815103CrossRefGoogle Scholar
  6. Cong N, Piao SL, Chen AP, et al. (2012) Spring vegetation greenup date in China inferred from SPOT NDVI data: A multiple model analysis. Agricultural and Forest Meteorology 165: 104–113. DOI:10.1016/j.agrformet.2012.06.009CrossRefGoogle Scholar
  7. Cong N, Wang T, Nan HJ, et al. (2013) Changes in satellitederived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob Chang Biol 19(3): 881–891. DOI:10.1111/gcb.12077CrossRefGoogle Scholar
  8. Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America 109(23): 9000–9005. DOI:10.1073/pnas.1118364109CrossRefGoogle Scholar
  9. Deng SF, Yang TB, Zeng B, et al. (2013) Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000-2011. Journal of Mountain Science 10(6): 1050–1062. DOI: 10.1007/s11629-013-2558-zCrossRefGoogle Scholar
  10. Ding MJ, Li LH, Zhang YL, et al. (2014) Temperature Change and Its Elevation Dependency on the Tibetan Plateau and Its Vicinity from 1971 to 2012. Resources Science 36(7): 1509–1518. (In Chinese)Google Scholar
  11. Ding MJ, Li LH, Zhang YL, et al. (2015) Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences 25(2): 131–148. DOI:10.1007/s11442-015-1158-yCrossRefGoogle Scholar
  12. Ding MJ, Zhang YL, Sun XM, et al. (2013) Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin 58(3): 396–405. DOI: 10.1007/s11434-012-5407-5CrossRefGoogle Scholar
  13. Dong MY, Jiang Y, Zheng C, et al. (2012) Trends in the thermal growing season throughout the Tibetan Plateau during 1960-2009. Agricultural and Forest Meteorology 166: 201–206. DOI: 10.1016/j.agrformet.2012.07.013CrossRefGoogle Scholar
  14. Fan J, Huang J, Zhang M (2013) Retrieval of Cropping Index in China Using Time Series of SPOT Vegetation NDVI. Sensor Letters 11(6): 1134–1140. DOI: 10.1166/sl.2013.2892CrossRefGoogle Scholar
  15. Fu Y, Zhang H, Dong W, et al. (2014) Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere. PlOS ONE 9(10): e109544. DOI: 10.1371/journal.pone.0109544CrossRefGoogle Scholar
  16. Gao L, Hao L, Chen XW (2014) Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau. Journal of Mountain Science 11(5): 1154–1168. DOI: 10.1007/s11629-014-3013-5CrossRefGoogle Scholar
  17. Hmimina G, Dufrêne E, Pontailler JY, et al. (2013) Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sensing of Environment 132: 145–158. DOI: 10.1016/j.rse.2013.01.010CrossRefGoogle Scholar
  18. Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing 7(11): 1417–1434. DOI: 10.1080/01431168608948945CrossRefGoogle Scholar
  19. Huete A, Didan K, Miura T, et al. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1-2): 195–213. DOI: 10.1016/s0034-4257(02)00096-2CrossRefGoogle Scholar
  20. Jin, ZN, Zhuang QL, He JS, et al. (2013) Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based s-oil physical model and remote sensing data. Climatic Change 119(2): 435–449. DOI: 10.1007/s10584-013-0722-7.CrossRefGoogle Scholar
  21. Kathuroju N, White MA, Symanzik J, et al. (2007) On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models. Ecological Modelling 201(2): 144–156. DOI: 10.1016/j. ecolmodel.2006.09.011CrossRefGoogle Scholar
  22. Linderholm HW (2006) Growing season changes in the last century. Agricultural and Forest Meteorology 137(1-2): 1–14. DOI:10.1016/j.agrformet.2006.03.006CrossRefGoogle Scholar
  23. Linderholm HW, Walther A, Chen D (2008) Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Climatic Change 87(3-4): 405–419. DOI: 10.1007/s10584-007-9327-3CrossRefGoogle Scholar
  24. Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20(14): 1729–1742. DOI: 10.1002/1097-0088 (20001130)20:14<1729:aid-joc556>3.0.co;2-yCrossRefGoogle Scholar
  25. Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. International Journal of Remote Sensing 25(1): 9–14. DOI: 10.1080/0143116031000115265CrossRefGoogle Scholar
  26. Memmott J, Craze PG, Waser NM, et al. (2007) Global warming and the disruption of plant-pollinator interactions. Ecology Letters 10(8): 710–717. DOI: 10.1111/j.1461-0248.2007.01061.xCrossRefGoogle Scholar
  27. Meroni M, Verstraete MM, Rembold F, et al. (2014) A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa. International Journal of Remote Sensing 35(7): 2472–2492. DOI: 10.1080/01431161.2014.883090CrossRefGoogle Scholar
  28. Myneni RB, Keeling CD, Tucker CJ, et al. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626): 698–702. DOI: 10.1038/386698a0CrossRefGoogle Scholar
  29. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 37–42. DOI: 10.1038/nature01286CrossRefGoogle Scholar
  30. Penuelas J, Filella I, Zhang XY, et al. (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist 161(3): 837–846. DOI: 10.1111/j.1469-8137.2004.01003.xCrossRefGoogle Scholar
  31. Penuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324(5929): 887–888. DOI: 10.1126/science.1173004CrossRefGoogle Scholar
  32. Piao SL, Cui MD, Chen AP, et al. (2011) Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology 151(12): 1599–1608. DOI: 10.1016/j.agrformet.2011.06.016CrossRefGoogle Scholar
  33. Piao SL, Fang JY, He JS (2006a) Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change 74(1-3): 253–267. DOI: 10.1007/s10584-005-6339-8CrossRefGoogle Scholar
  34. Piao SL, Fang JY, Zhou LM, et al. (2006b) Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology 12(4): 672–685. DOI: 10.1111/j.1365-2486.2006.01123.xCrossRefGoogle Scholar
  35. Piao SL, Tan JG, Chen AP, et al. (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications 6. DOI: 10.1038/ncomms7911.Google Scholar
  36. Rembold F, Atzberger C, Savin I, et al. (2013) Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sensing 5(4): 1704–1733. DOI: 10.3390/rs5041704CrossRefGoogle Scholar
  37. Robeson SM (2002) Increasing growing-season length in Illinois during the 20th century. Climatic Change 52(1-2): 219–238. DOI: 10.1023/a:1013088011223CrossRefGoogle Scholar
  38. Rosenzweig C, Karoly D, Vicarelli M, et al. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193): 353–357. DOI: 10.1038/nature06937CrossRefGoogle Scholar
  39. Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America. International Journal of Climatology 30(11): 1614–1626. DOI: 10.1002/joc.2008CrossRefGoogle Scholar
  40. Seghieri J, Vescovo A, Padel K, et al. (2009) Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient. Journal of Hydrology 375(1-2): 78–89. DOI: 10.1016/j.jhydrol.2009.01.023CrossRefGoogle Scholar
  41. Shen MG (2011) Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 108(19): E91–E92. DOI: 10.1073/pnas.1018390108CrossRefGoogle Scholar
  42. Shen MG, Sun ZZ, Wang SP, et al. (2013) No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences of the United States of America 110(26): E2329–E2329. DOI: 10.1073/pnas.1304625110CrossRefGoogle Scholar
  43. Shen MG, Tang YH, Chen J, et al. (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology 151(12): 1711–1722. DOI: 10.1016/j.agrformet.2011.07.003CrossRefGoogle Scholar
  44. Sherry RA, Zhou XH, Gu SL, et al. (2007) Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America 104(1): 198–202. DOI: 10.1073/pnas.0605642104CrossRefGoogle Scholar
  45. Song CQ, You SC, Ke LH, et al. (2011) Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology 35(8): 853–863. (In Chinese)CrossRefGoogle Scholar
  46. Sun HL, Zheng D, Yao TD, et al. (2012) Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica 67(1): 3–12. (In Chinese)Google Scholar
  47. Tao J, Zhang Y, Zhu J, et al. (2013) Elevation-dependent temperature change in the Qinghai–Xizang Plateau grassland during the past decade. Theoretical and Applied Climatology 117(1): 61–71. DOI: 10.1007/s00704-013-0976-zGoogle Scholar
  48. Tang YH, Wan SQ, He JS, et al. (2009) Foreword to the special issue: looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology 2(4): 169–171. DOI: 10.1093/jpe/rtp026CrossRefGoogle Scholar
  49. Walther A, Linderholm HW (2006) A comparison of growing season indices for the Greater Baltic Area. International Journal of Biometeorology 51(2): 107–118. DOI: 10.1007/s00484-006-0048-5CrossRefGoogle Scholar
  50. Walther GR (2003) Plants in a warmer world. Perspectives in Plant Ecology Evolution and Systematics 6(3): 169–185. DOI: 10.1078/1433-8319-00076CrossRefGoogle Scholar
  51. White MA, de Beurs KM, Didan K, et al. (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology 15(10): 2335–2359. DOI: 10.1111/j.1365-2486.2009.01910.xCrossRefGoogle Scholar
  52. White MA, Running SW, Thornton PE (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology 42: 139–145. DOI: 10.1007/s004840050097CrossRefGoogle Scholar
  53. White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles 11(2): 217–234. DOI: 10.1029/97gb00330CrossRefGoogle Scholar
  54. Yu HY, Luedeling E, Xu JC (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 107(51): 22151–22156. DOI: 10.1073/pnas.1012490107CrossRefGoogle Scholar
  55. Zhang XY, Friedl MA, Schaaf CB (2009) Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. International Journal of Remote Sensing 30(8): 2061–2074. DOI:10.1080/01431160802549237CrossRefGoogle Scholar
  56. Zhang XY, Friedl MA, Schaaf CB, et al. (2003) Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84(3): 471–475. DOI: 10.1016/s0034-4257(02)00135-9CrossRefGoogle Scholar
  57. Zhang XY, Friedl MA, Schaaf CB, et al. (2005) Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. Journal of Geophysical Research-Atmospheres 110(D12): 10.1029/2004jd005263. DOI: 10.1029/2004jd005263Google Scholar
  58. Zhang YL, Li BY, Zheng D (2002) A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research 21(1): 1–8. (In Chinese)Google Scholar
  59. Zhang GL, Zhang YJ, Dong JW (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Procee-dings of the National Academy of Sciences of the United States of America 110(11): 4309–4314. DOI: 10.1073/pnas.1210423110.CrossRefGoogle Scholar
  60. Zhou HK, Yao BQ, Xu WX, et al. (2014) Field Evidence for Earlier Leaf-Out Dates in Alpine Grassland On the Eastern Tibetan Plateau From 1990 to 2006. Biology Letters. 10(201402918). DOI: 10.1098/rsbl.2014.0291Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ming-jun Ding
    • 1
    • 2
  • Lan-hui Li
    • 1
    • 2
  • Yong Nie
    • 4
  • Qian Chen
    • 1
  • Yi-li Zhang
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education and School of Geography and EnvironmentJiangxi Normal UniversityNanchangChina
  2. 2.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  4. 4.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina

Personalised recommendations