Advertisement

Journal of Mountain Science

, Volume 13, Issue 11, pp 2046–2052 | Cite as

Mineral constituents of a prized edible mushroom (Tricholoma matsutake) and soils beneath the fruiting bodies from the production areas across China

  • Qiang Li
  • Shu-hong Li
  • Wen-li Huang
  • Cheng-yi Liu
  • Chuan Xiong
  • Xiao-lin LiEmail author
  • Lin-yong Zheng
Article

Abstract

Fruiting bodies (500 g per site) of Tricholoma matsutake and the surface layer of soils collected from 20 spatially distant areas with pristine backgrounds across China were analyzed for potassium, magnesium, calcium, zinc, iron, copper, manganese and cadmium using inductively coupled plasma optical emission spectroscopy. In terms of the bioconcentration and bioexclusion concept, K, Mg, Zn, and Cu were highly bioconcentrated, and their bioconcentration factor values varied between 75-615, 2-107, 38-603 and 7-76, respectively, across the 20 sites. Fe, Mn and Cd were moderately bioconcentrated and their bioconcentration factors (BCFs) varied between 0.6-34.0, 0.4-37.0 and 0.9-7.0 respectively. However, Ca was excluded (BCF<1). T. matsutake is a species that is harvested in the wild as a valuable food and can contain a wide spectrum of both essential and hazardous mineral compounds that accumulate at elevated concentrations even if grown in pristine areas. The estimated intake rate of Cd in the fruiting bodies indicates cause for concern associated with this metal resulting from the daily consumption of between 200 and 400 g of fruiting bodies on a frequent basis during the mushrooming season.

Keywords

Fungi Heavy metals Mineral composition Mushrooms Wild food 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11629_2015_3568_MOESM1_ESM.pdf (149 kb)
Basic information of sampled sites of Tricholoma matsutake

References

  1. Brzostowski A, Bielawski L, Orlikowska A, et al. (2009) Instrumental analysis of metals profile in Poison Pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chemia Analityczna 54(6): 907–920.Google Scholar
  2. Brzostowski A, Falandysz J, Jarzynska G, et al. (2011a) Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. Journal of Environmental Science and Health Part A 46(4): 378–393. DOI: 10.1080/10934529.2011.542387CrossRefGoogle Scholar
  3. Brzostowski A, Jarzynska G, Kojta AK, et al. (2011b) Variations in metal levels accumulated in Poison Pax (Paxillus involutus) mushroom collected at one site over four years. Journal of Environmental Science and Health Part A 46(6): 581–588. DOI: 10.1080/10934529.2011. 562827CrossRefGoogle Scholar
  4. Chang ST (1990) Composition of foods -mushrooms as food. Food Lab News 21(1): 7–8.Google Scholar
  5. Cho IH, Choi HK, Kim YS (2006) Difference in the volatile composition of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades. Journal of Agricultural and Food Chemistry 54(13): 4820–4825. DOI: 10.1021/jf0601416CrossRefGoogle Scholar
  6. Chudzynski K, Falandysz J (2008) Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere 73(8): 1230–1239. DOI: 10.1016/j.chemosphere. 2008.07.055CrossRefGoogle Scholar
  7. Ding X, Tang J, Cao M, et al. (2010) Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake. International Journal of Biological Macromolecules 47(2): 271–275. DOI: 10.1016/j.ijbiomac.2010. 04.010CrossRefGoogle Scholar
  8. Ding X, Hou YL (2012) Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins. Biochemical Systematics and Ecology 44: 233–239. DOI: 10.1016/j.bse.2012.06.003CrossRefGoogle Scholar
  9. EU (2008) Commission Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of European Union L173: 6–9.Google Scholar
  10. Falandysz J (2002) Mercury in mushrooms and soil of the Tarnobrzeska Plain, south-eastern Poland. Journal of Environmental Science and Health Part A 37(3): 343–352. DOI: 10.1081/ESE-120002833CrossRefGoogle Scholar
  11. Falandysz J, Brzostowski A (2007) Mercury and its bioconcentration factors in Poison Pax (Paxillus involutus) from various sites in Poland. Journal of Environmental Science and Health Part A 42(8): 1095–1100. DOI: 10.1080/1093452071418599CrossRefGoogle Scholar
  12. Falandysz J, Frankowska A, Jarzynska G, et al. (2011) Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. Journal of Environmental Science and Health, Part B 46(3): 231–246. DOI: 10.1080/03601234.2011.540528CrossRefGoogle Scholar
  13. Falandysz J, Drewnowska M, Jarzynska G, et al. (2012) Mineral constituents in Common Chanterelles and soils collected from a high mountain and lowland sites in Poland. Journal of Mountain Science 9(5): 697–705. DOI: 10.1007/s11629-012-2381-yCrossRefGoogle Scholar
  14. Falandysz J, Borovicka J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology 97(2): 477–501. DOI: 10.1007/s00253-012-4552-8CrossRefGoogle Scholar
  15. Falandysz J, Dryzalowska A, Saba M, et al. (2014) Mercury in the fairy-ring of Gymnopus erythropus (Pers.) and Marasmius dryophilus (Bull.) P. Karst. mushrooms from the Gongga Mountain, Eastern Tibetan Plateau. Ecotoxicology and Environmental Safety 104: 18–22. DOI: 10.1016/j.ecoenv.2014.02.012Google Scholar
  16. Gill WM, Lapeyrie F, Gomi T, et al. (1999) Tricholoma matsutake -an assessment of in situ and in vitro infection by observing cleared and stained whole roots. Mycorrhiza 9(4): 227–231. DOI: 10.1007/s005720050271CrossRefGoogle Scholar
  17. Guerin-Laguette A, Shindo K, Matsushita N, et al. (2004) The mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14(6): 397–400. DOI: 10.1007/s00572-004-0322-5CrossRefGoogle Scholar
  18. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi bioweathering and bioremediation. Mycological Research 111(1): 3–49. DOI: 10.1016/j. mycres.2006.12.001CrossRefGoogle Scholar
  19. Gucia M, Jarzynska G, Rafal E, et al. (2012) Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environmental Science and Pollution Research 19(2): 416–431. DOI: 10.1007/s11356-011-0574-5CrossRefGoogle Scholar
  20. Hoshi H, Yagi Y, Iijima H, et al. (2005) Isolation and characterization of a novel immunomodulatory a-glucanprotein complex from the mycelium of Tricholoma matsutake in basidiomycetes. Journal of Agricultural and Food Chemistry 53(23): 8948–8956. DOI: 10.1021/jf0510743CrossRefGoogle Scholar
  21. Hou YL, Sun SC, Wu LJ, et al. (2013) Calcium sensitizers isolated from the edible pine mushroom, Tricholoma matsutake (S. Ito & Imai) Sing. Zeitschrift Fur Naturforschung Section C 68(3-4): 113–117.CrossRefGoogle Scholar
  22. Iwase K (1997) Cultivation of mycorrhizal mushrooms. Food Reviews International 13(3): 431–442. DOI: 10.1016/S0167-7799(03)00204-XCrossRefGoogle Scholar
  23. Kalac P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry 113(1): 9–16. DOI: 10.1016/j.foodchem.2008.07.077CrossRefGoogle Scholar
  24. Kalac P (2012) A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture 93(2): 209–218. DOI: 10.1002/jsfa.5960CrossRefGoogle Scholar
  25. Kim JY, Byeon SE, Lee YG, et al. (2008) Immunostimulatory activities of polysaccharides from liquid culture of pinemushroom Tricholoma matsutake. Journal of Microbiology and Biotechnology 18(1): 95–103.Google Scholar
  26. Kim M, Yoon H, Kim YE, et al. (2014) Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing. Journal of Applied Microbiology 117(3): 699–710. DOI: 10.1111/jam.12572CrossRefGoogle Scholar
  27. Kuldo E, Jarzynska G, Gucia M et al. (2014) Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. Chemical Papers 68(4): 484–492. DOI: 10.2478/s11696-013-0477-7Google Scholar
  28. Liu G, Wang H, Zhou BH, et al. (2010) Compositional analysis and nutritional studies of Tricholoma matsutake collected from Southwest China. Journal of Medicinal Plants Research 4(12): 1222–1227.Google Scholar
  29. Liu HG, Zhang J, Li T, et al. (2012) Mineral element levels in wild edible mushrooms from Yunnan, China. Biological Trace Element Research 147(1-3): 341–345. DOI: 10.1007/s12011-012-9321-0CrossRefGoogle Scholar
  30. Li T, Zhang J, Shen T, et al. (2013) Mineral element content in prized matsutake mushroom (Tricholoma matsutake) collected in China. Chemical Papers 76(6): 672–676. DOI: 10.2478/s11696-013-0353-5Google Scholar
  31. Melgar MJ, Alonso J, García MÁ (2009) Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Science of the Total Environment 407(20): 5328–5334. DOI: 10.1016/j.scitotenv.2009.07.001CrossRefGoogle Scholar
  32. Murata H, Yamada A, Maruyama T, et al. (2013) Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro”. Mycorrhiza 23(3): 235–242. DOI: 10.1007/s00572-012-0466-7CrossRefGoogle Scholar
  33. Ohnuma N, Amemiya K, Kakuda R, et al. (2000) Sterol constituents from two edible mushrooms, Lentinula edodes and Tricholoma matsutake. Chemical & Pharmaceutical Bulletin 48(5): 749–751.CrossRefGoogle Scholar
  34. Stijve T, Besson R (1976) Mercury, cadmium, lead and selenium content of mushroom species belonging to the genus Agaricus. Chemosphere 5(2): 151–158. DOI: 10.1016/0045-6535(76)90036-9CrossRefGoogle Scholar
  35. Vaario LM, Kiikkila O, Hamberg L (2013) The influences of litter cover and understorey vegetation on fruitbody formation of Tricholoma matsutake in southern Finland. Applied Soil Ecology 66(2): 56–60. DOI: 10.1016/j.apsoil. 2012.11.009CrossRefGoogle Scholar
  36. Wiejak A, Wang YZ, Zhang J, et al. (2014) Bioconcentration potential and contamination with mercury of pantropical mushroom Macrocybe gigantean. Journal of Environmental Science and Health Part B 49(11): 811–814. DOI: 10.1080/03601234.2014.938549.CrossRefGoogle Scholar
  37. Wang XM, Zhang J, Wu LH, et al. (2014) A mini-review of chemical composition and nutritional value of edible wildgrown mushroom from China. Food Chemistry 151(20): 279–285. DOI: 10.1016/j.foodchem.2013.11.062.CrossRefGoogle Scholar
  38. Wang XM, Zhang J, Li Tao, et al. (2015) Content and bioaccumulation of nine mineral elements in ten mushroom species of the Genus Boletus. Journal of Analytical Methods in Chemistry 2015, Article ID 165412. DOI: 10.1155/2015/165412Google Scholar
  39. Yamada A, Maeda K, Kobayashi H, et al. (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16(2): 111–116. DOI: 10.1007/s00572-005-0021-xCrossRefGoogle Scholar
  40. Yang XF, Luedeling E, Chen GL, et al. (2012) Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Diversity 56(1): 189–198. DOI: 10.1007/s13225-012-0163-zCrossRefGoogle Scholar
  41. Zhang D, Zhang Y, Morawska E, et al. (2013) Trace elements in Leccinum scabrum Mushrooms and topsoils from Klodzka Dale in Sudety Mountains, Poland. Journal of Mountain Science 10(4): 621–627. DOI: 10.1007/s11629-013-2384-3CrossRefGoogle Scholar
  42. Zhang J, Hull V, Huang J, et al. (2014) Natural recovery and restoration in giant panda habitat after the Wenchuan Earthquake. Forest Ecology & Management 319(3): 1–9. DOI: 10.1016/j.foreco.2014.01.029CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qiang Li
    • 1
    • 3
  • Shu-hong Li
    • 2
  • Wen-li Huang
    • 3
  • Cheng-yi Liu
    • 4
  • Chuan Xiong
    • 1
    • 3
  • Xiao-lin Li
    • 1
    Email author
  • Lin-yong Zheng
    • 1
    • 3
  1. 1.Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina
  2. 2.Biotechnology & Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingChina
  3. 3.Institute of Biological & Nuclear TechnologySichuan Academy of Agricultural SciencesChengduChina
  4. 4.Sichuan Panzhihua Academia of Agriculture and ForestryPanzhihuaChina

Personalised recommendations