Skip to main content

The spatial distribution characteristics of shallow fissures of a landslide in the Wenchuan earthquake area

Abstract

Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave (MASW), Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT). The results suggested that geophysical parameters (shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.

This is a preview of subscription content, access via your institution.

References

  1. Anbazhagan P, Indraratna B, Rujikiatkamjorn C, et al. (2010) Using a seismic survey to measure the shear modulus of clean and fouled ballast. Geomechanics and Geoengineering: An International Journal 5 (2): 117–126. DOI: 10.1080/17486020903497431

    Article  Google Scholar 

  2. Anbazhagan P, Lijun S, Buddhima I, et al. (2011) Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave. Journal of Applied Geophysics 74 (4): 175–184. DOI: 10.1016/j.jappgeo.2011.05.002

    Article  Google Scholar 

  3. Anbazhagan P, Sitharam T G. (2008) Site characterization and site response studies using shear wave velocity. Journal of Seismology and Earthquake Engineering 10 (2): 53–67. Available online: http: //jseeonline.com/index.php/jsee/article/view/131 (Accessed on 29 December 2015)

    Google Scholar 

  4. Bichler A, Bobrowsky P, Best M, et al. (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides 1(1): 29–40. DOI: 10.1007/s10346-003-0008-7

    Article  Google Scholar 

  5. Bievre G, Jongmans D, Winiarski T, et al. (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trieves area, French Alps). Hydrological Processes 26(14): 2128–2142. DOI: 10.1002/hyp.7986

    Article  Google Scholar 

  6. Bruno F, Martillier F (2000) Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surveys in Geophysics 21 (4): 335–350. DOI: 10.1023/A: 1006736824075

    Article  Google Scholar 

  7. Bogoslovsky VA, Ogilvy AA (1977) Geophysical Methods for the Investigation of Landslides. Geophysics 42(3): 562–571. DOI: 10.1190/1.1440727

    Article  Google Scholar 

  8. Cha M, Cho GC (2007) Shear strength estimation of sandy soils using shear wave velocity. ASTM Geotechnical Testing Journal 30(6): 484–495. DOI: 10.1520/gtj100011

    Google Scholar 

  9. Cui Fang-peng, Hu Rui-lin, Yin Yue-ping, et al. (2010) Discrete element analysis of collapsing and slidingresponse of slope triggered by time difference coupling effects of p and s seismic waves: taking Tangjiashan landslide in Beichuan county for example. Chinese Journal of Rock Mechanics and Engineering 29(2): 319–327. Available online: http: //www.rockmech.org/CN/abstract/abstract19956.shtml (Accessed on 29 December 29 2015)

    Google Scholar 

  10. Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37(5): 531–551. DOI: 10.1111/j.1365-2478.1989.tb02221.x

    Article  Google Scholar 

  11. Grandjean G, Malet JP, Bitri A, et al. (2007) Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides. Bulletin de la Societe Geologique de France 177(2): 127–136. DOI: 10.2113/gssgfbull.178.2.127. Available online at: https: //www.researchgate.net/journal/0037-9409_Bulletin_de_la_Societe_Geologique_de_France (Accessed on 29 December 2015)

    Article  Google Scholar 

  12. Grandjean G, Hibert C, Mathieu F, et al. (2009) Monitoring water flowin a clay–shale hillslope from geophysical data fusion based on a fuzzy logic approach. Comptes Rendus Geoscience 341(10-11): 937–948. DOI: 10.1016/j.crte.2009.08.003

    Article  Google Scholar 

  13. Grandjean G, Bitri A, Krzeminska DM (2012) Characterisation of a landslide fissure pattern by integrating seismic azimuth tomography and geotechnical testing. Hydrological Processes 26(14): 2120–2127. DOI: 10.1002/hyp.7993

    Article  Google Scholar 

  14. Hibert C, Grandjean G, Bitri A, et al. (2012) Characterizing landslides through geophysical data fusion: Example of the La Valette landslide (France). Engineering Geology 128: 23–29. DOI: 10.1016/j.enggeo.2011.05.001

    Article  Google Scholar 

  15. Hu JF, Xu XQ, Yang HY, et al. (2011) S receiver function analysis of the crustal and lithospheric structures beneath eastern Tibet. Earth and Planetary Science Letters 306 (1-2): 77–85. DOI: 10.1016/j.epsl.2011.03.034

    Article  Google Scholar 

  16. Jeannin M, Garambois S, Gregoire S et al. (2006) Multi-configuration GPR measurements for geometrical fracture characterization in limestone cliffs (Alps). Geophysics 71(3): B85–B92. DOI: 10.1190/1.2194526

    Article  Google Scholar 

  17. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bulletin de la Société géologique de France 178(2): 101–112. DOI: 10.2113/gssgfbull.178.2.101

    Article  Google Scholar 

  18. Jongmans D, Bièvre G, Renalier F, et al. (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Engineering Geology 109 (1-2): 45–56. DOI: 10.1016/j.enggeo.2008.10.005

    Article  Google Scholar 

  19. Krzeminska DM, Bogaard TA, Debieche T-H, et al. (2009). Quantitative analysis of preferential flow during small scale infiltration tests on an active mudslide, Super-Sauze, SouthFrench Alps. In Proceedings of the International Conference of Landslide Processes: from Geomorphologic Mapping to Dynamic Modelling, Strasbourg, France, February, 2009.

    Google Scholar 

  20. Lapenna V, Lorenzo P, Perrone A, et al. (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70(3): 11–18. DOI: 10.1190/1.1926571

    Article  Google Scholar 

  21. Lebourg TS, Binet E, Tric H et al. (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17(5): 399–406. DOI: 10.1111/j.1365-3121.2005.00623.x

    Article  Google Scholar 

  22. Le Roux O, Jongmans D, Kasperski J et al. (2011) Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Engineering Geology 120(1-4): 18–31. DOI: 10.1016/j.enggeo.2011.03.004

    Article  Google Scholar 

  23. Lima JSB, Luiz PR, Moreda MR (2012) Application of multichannel analysis of surface waves method (MASW) in an area susceptible to landslide at ubatuba city, Brazil. Revista Brasileira de Geofísica 30(2). Available online: http://sys2.sbgf.org.br/revista/index.php/rbgf/article/viewFile/109/50 (Accessed on 29 December 2015)

    Google Scholar 

  24. Liu CL, Zheng Y, Ge C, et al. (2013) Rupture process of the M s7. 0 Lushan earthquake. Science China Earth Sciences 56(7): 1187–1192. DOI: 10.1007/s11430-013-4639-9

    Article  Google Scholar 

  25. Loke MH, Barker R (1996) Rapid least-squares inversion of apparent pseudosections by a quasi-newton method. Geophysical Prospecting 44(1): 131–152. DOI: 10.1111/j.1365-2478.1996.tb00142.x

    Article  Google Scholar 

  26. Luo J (2015) The mechanism and controlling factors for the reactivation of the Xishan village landslide in Lixian county. Master Degree Thesis, Chengdu University of Technology, Chengdu, China.

    Google Scholar 

  27. Malet JP, Maquaire O (2003) Black marl earthflows mobility and long-term seasonal dynamic in southeastern France. In: Proceedings of the 1 st International Conference on Fast Slope Movements, Naples, Italy, Patron Editore, Bologna, 333-340, 2003.

    Google Scholar 

  28. Maheswari RU, Boominathan A, Dodagoudar GR (2010) Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soil. Geotechnical and Geological Engineering 28(2): 119–137. DOI: 10.1007/s10706-009-9285-9

    Article  Google Scholar 

  29. Marescot L, Monnet R, Chapellier D (2008) Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps. Engineering Geology 98(1-2): 18–28. DOI: 10.1016/j.enggeo.2008.01.010

    Article  Google Scholar 

  30. Meisina C (2006) Characterisation of weathered clayey soils responsible for shallow landslides. Natural Hazards & Earth System Sciences 6(5): 825–838. DOI: 10.5194/nhess-6-825-2006

    Article  Google Scholar 

  31. Meric O, Garambois S, Jongmans D, et al. (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Canadian Geotechnical Journal 42(4): 1105–1115. DOI: 10.1139/t05-034

    Article  Google Scholar 

  32. Meric O, Garambois S, Malet JP, et al. (2007) Seismic noise-based methods for soft-rock landslide characterization. Bulletin de la Societe Geologique de France 178(2): 137–148. DOI: 10.2113/gssgfbull.178.2.137

    Article  Google Scholar 

  33. Morris PH, Graham J, Williams DJ (1992) Cracking in drying soils. Canadian Geotechnical Journal 29(2): 263–277. DOI: 10.1139/t92-030

    Article  Google Scholar 

  34. Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science Reviews 66(3): 261–330. DOI: 10.1016/j.earscirev.2004.01.004

    Article  Google Scholar 

  35. Nieuwenhuis JD (1991) Variations in stability and displacements of a shallow seasonal landslide in varved clays. PhD Thesis, Utrecht University, the Netherlands.

    Google Scholar 

  36. Otto JC, Sass O (2006) Comparing geophysical methods for talus slope investigations in the Turtmann valley (Swiss Alps). Geomorphology 76(3-4): 257–272. DOI: 10.1016/j.geomorph.2005.11.008

    Article  Google Scholar 

  37. Park CB, Miller RD, Xia J (1999) Multi-channel analysis of surface waves. Geophysics 64 (3): 800–808. DOI: 10.4133/1.3445516

    Article  Google Scholar 

  38. Reynolds JM (1997) An introduction to Applied and Environment Geophysics, 2nd Edition. John Wiley & Sons Chichester, UK. p 796.

    Google Scholar 

  39. Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan plateau. Science 321(5892): 1054–1058. DOI: 10.1126/science.1155371

    Article  Google Scholar 

  40. Torgoev A, Lamair L, Torgoev I, et al. (2013) A review of recent case studies of landslides investigated in the Tien Shan using microseismic and other geophysical methods, In: Earthquake-Induced Landslides. Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012. pp. 285–294. DOI: 10.1007/978-3-642-32238-9_29

    Chapter  Google Scholar 

  41. Van Asch TWJ, Brinkhorst WH, Buist HJ, etj al. (1984) The development of landslides by retrogressive failure in varved clays. Zeitschrift fur Geomorphologie NF 4: 165–181. Available online: http: //omiv.osug.fr/DOC/BIBLIO/TRIEVES/VanAsh_1984.pdf (Accessed on 29 December 2015)

    Google Scholar 

  42. Wu FQ, Fu BH, Li X, et al. (2008) Initial analysis of the mechanism of the Wenchuan Earthquake (Southwest China), 12 May 2008. Bulletin of Engineering Geology and the Environment 67(4): 453–455. DOI: 10.1007/s10064-008-0179-5

    Article  Google Scholar 

  43. Xu Q, Chen J, Feng W, et al. (2009) Study of the seismic response of slopes by physical modeling. Journal of Sichuan University (Engineering Science Edition) 3: 039. DOI: 10.15961/j.jsuese.2009.03.009

    Google Scholar 

  44. Xu Q, Zhang S, Dong XJ (2011) Genetic types of large-scale landslides induced by the Wenchuan earthquake [M]// Earthquake-Induced Landslides. Springer Berlin Heidelberg, pp 511–520. DOI: 10.1007/978-3-642-32238-9-54.

    Google Scholar 

  45. Yang CW, Zhang JJ (2013) Landslide response of high steep hill with two-side slopes under ground shaking. Chinese Journal of Southwest Jiaotong University 48(3): 416–422. DOI: 10.3969/j.issn.0258-2724.2013.03.004

    Google Scholar 

  46. Yamakawa Y, Kosugi K, Masaoka N, Tada, et al. (2010) Use of a combined penetrometer–moisture probe together with geophysical methods to survey hydrological properties of a natural slope. Vadose Zone Journal 9(3): 768. DOI: 10.2136/vzj2010.0012

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li-jun Su.

Additional information

http://orcid.org/0000-0003-4555-6072

http://orcid.org/0000-0001-9972-4698

http://orcid.org/0000-0003-1210-0191

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Xq., Su, Lj. & Liu, C. The spatial distribution characteristics of shallow fissures of a landslide in the Wenchuan earthquake area. J. Mt. Sci. 13, 1544–1557 (2016). https://doi.org/10.1007/s11629-015-3487-9

Download citation

Keywords

  • Shallow fissures
  • Landslide
  • Wenchuan earthquake
  • Geophysical prospecting