Journal of Mountain Science

, Volume 13, Issue 9, pp 1544–1557 | Cite as

The spatial distribution characteristics of shallow fissures of a landslide in the Wenchuan earthquake area

  • Xing-qian Xu
  • Li-jun SuEmail author
  • Chao Liu


Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave (MASW), Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT). The results suggested that geophysical parameters (shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.


Shallow fissures Landslide Wenchuan earthquake Geophysical prospecting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anbazhagan P, Indraratna B, Rujikiatkamjorn C, et al. (2010) Using a seismic survey to measure the shear modulus of clean and fouled ballast. Geomechanics and Geoengineering: An International Journal 5 (2): 117–126. DOI: 10.1080/17486020903497431CrossRefGoogle Scholar
  2. Anbazhagan P, Lijun S, Buddhima I, et al. (2011) Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave. Journal of Applied Geophysics 74 (4): 175–184. DOI: 10.1016/j.jappgeo.2011.05.002CrossRefGoogle Scholar
  3. Anbazhagan P, Sitharam T G. (2008) Site characterization and site response studies using shear wave velocity. Journal of Seismology and Earthquake Engineering 10 (2): 53–67. Available online: http: // (Accessed on 29 December 2015)Google Scholar
  4. Bichler A, Bobrowsky P, Best M, et al. (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides 1(1): 29–40. DOI: 10.1007/s10346-003-0008-7CrossRefGoogle Scholar
  5. Bievre G, Jongmans D, Winiarski T, et al. (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trieves area, French Alps). Hydrological Processes 26(14): 2128–2142. DOI: 10.1002/hyp.7986CrossRefGoogle Scholar
  6. Bruno F, Martillier F (2000) Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surveys in Geophysics 21 (4): 335–350. DOI: 10.1023/A: 1006736824075CrossRefGoogle Scholar
  7. Bogoslovsky VA, Ogilvy AA (1977) Geophysical Methods for the Investigation of Landslides. Geophysics 42(3): 562–571. DOI: 10.1190/1.1440727CrossRefGoogle Scholar
  8. Cha M, Cho GC (2007) Shear strength estimation of sandy soils using shear wave velocity. ASTM Geotechnical Testing Journal 30(6): 484–495. DOI: 10.1520/gtj100011Google Scholar
  9. Cui Fang-peng, Hu Rui-lin, Yin Yue-ping, et al. (2010) Discrete element analysis of collapsing and slidingresponse of slope triggered by time difference coupling effects of p and s seismic waves: taking Tangjiashan landslide in Beichuan county for example. Chinese Journal of Rock Mechanics and Engineering 29(2): 319–327. Available online: http: // (Accessed on 29 December 29 2015)Google Scholar
  10. Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37(5): 531–551. DOI: 10.1111/j.1365-2478.1989.tb02221.xCrossRefGoogle Scholar
  11. Grandjean G, Malet JP, Bitri A, et al. (2007) Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides. Bulletin de la Societe Geologique de France 177(2): 127–136. DOI: 10.2113/gssgfbull.178.2.127. Available online at: https: // (Accessed on 29 December 2015)CrossRefGoogle Scholar
  12. Grandjean G, Hibert C, Mathieu F, et al. (2009) Monitoring water flowin a clay–shale hillslope from geophysical data fusion based on a fuzzy logic approach. Comptes Rendus Geoscience 341(10-11): 937–948. DOI: 10.1016/j.crte.2009.08.003CrossRefGoogle Scholar
  13. Grandjean G, Bitri A, Krzeminska DM (2012) Characterisation of a landslide fissure pattern by integrating seismic azimuth tomography and geotechnical testing. Hydrological Processes 26(14): 2120–2127. DOI: 10.1002/hyp.7993CrossRefGoogle Scholar
  14. Hibert C, Grandjean G, Bitri A, et al. (2012) Characterizing landslides through geophysical data fusion: Example of the La Valette landslide (France). Engineering Geology 128: 23–29. DOI: 10.1016/j.enggeo.2011.05.001CrossRefGoogle Scholar
  15. Hu JF, Xu XQ, Yang HY, et al. (2011) S receiver function analysis of the crustal and lithospheric structures beneath eastern Tibet. Earth and Planetary Science Letters 306 (1-2): 77–85. DOI: 10.1016/j.epsl.2011.03.034CrossRefGoogle Scholar
  16. Jeannin M, Garambois S, Gregoire S et al. (2006) Multi-configuration GPR measurements for geometrical fracture characterization in limestone cliffs (Alps). Geophysics 71(3): B85–B92. DOI: 10.1190/1.2194526CrossRefGoogle Scholar
  17. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bulletin de la Société géologique de France 178(2): 101–112. DOI: 10.2113/gssgfbull.178.2.101CrossRefGoogle Scholar
  18. Jongmans D, Bièvre G, Renalier F, et al. (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Engineering Geology 109 (1-2): 45–56. DOI: 10.1016/j.enggeo.2008.10.005CrossRefGoogle Scholar
  19. Krzeminska DM, Bogaard TA, Debieche T-H, et al. (2009). Quantitative analysis of preferential flow during small scale infiltration tests on an active mudslide, Super-Sauze, SouthFrench Alps. In Proceedings of the International Conference of Landslide Processes: from Geomorphologic Mapping to Dynamic Modelling, Strasbourg, France, February, 2009.Google Scholar
  20. Lapenna V, Lorenzo P, Perrone A, et al. (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70(3): 11–18. DOI: 10.1190/1.1926571CrossRefGoogle Scholar
  21. Lebourg TS, Binet E, Tric H et al. (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17(5): 399–406. DOI: 10.1111/j.1365-3121.2005.00623.xCrossRefGoogle Scholar
  22. Le Roux O, Jongmans D, Kasperski J et al. (2011) Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Engineering Geology 120(1-4): 18–31. DOI: 10.1016/j.enggeo.2011.03.004CrossRefGoogle Scholar
  23. Lima JSB, Luiz PR, Moreda MR (2012) Application of multichannel analysis of surface waves method (MASW) in an area susceptible to landslide at ubatuba city, Brazil. Revista Brasileira de Geofísica 30(2). Available online: (Accessed on 29 December 2015)Google Scholar
  24. Liu CL, Zheng Y, Ge C, et al. (2013) Rupture process of the M s7. 0 Lushan earthquake. Science China Earth Sciences 56(7): 1187–1192. DOI: 10.1007/s11430-013-4639-9CrossRefGoogle Scholar
  25. Loke MH, Barker R (1996) Rapid least-squares inversion of apparent pseudosections by a quasi-newton method. Geophysical Prospecting 44(1): 131–152. DOI: 10.1111/j.1365-2478.1996.tb00142.xCrossRefGoogle Scholar
  26. Luo J (2015) The mechanism and controlling factors for the reactivation of the Xishan village landslide in Lixian county. Master Degree Thesis, Chengdu University of Technology, Chengdu, China.Google Scholar
  27. Malet JP, Maquaire O (2003) Black marl earthflows mobility and long-term seasonal dynamic in southeastern France. In: Proceedings of the 1 st International Conference on Fast Slope Movements, Naples, Italy, Patron Editore, Bologna, 333-340, 2003.Google Scholar
  28. Maheswari RU, Boominathan A, Dodagoudar GR (2010) Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soil. Geotechnical and Geological Engineering 28(2): 119–137. DOI: 10.1007/s10706-009-9285-9CrossRefGoogle Scholar
  29. Marescot L, Monnet R, Chapellier D (2008) Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps. Engineering Geology 98(1-2): 18–28. DOI: 10.1016/j.enggeo.2008.01.010CrossRefGoogle Scholar
  30. Meisina C (2006) Characterisation of weathered clayey soils responsible for shallow landslides. Natural Hazards & Earth System Sciences 6(5): 825–838. DOI: 10.5194/nhess-6-825-2006CrossRefGoogle Scholar
  31. Meric O, Garambois S, Jongmans D, et al. (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Canadian Geotechnical Journal 42(4): 1105–1115. DOI: 10.1139/t05-034CrossRefGoogle Scholar
  32. Meric O, Garambois S, Malet JP, et al. (2007) Seismic noise-based methods for soft-rock landslide characterization. Bulletin de la Societe Geologique de France 178(2): 137–148. DOI: 10.2113/gssgfbull.178.2.137CrossRefGoogle Scholar
  33. Morris PH, Graham J, Williams DJ (1992) Cracking in drying soils. Canadian Geotechnical Journal 29(2): 263–277. DOI: 10.1139/t92-030CrossRefGoogle Scholar
  34. Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science Reviews 66(3): 261–330. DOI: 10.1016/j.earscirev.2004.01.004CrossRefGoogle Scholar
  35. Nieuwenhuis JD (1991) Variations in stability and displacements of a shallow seasonal landslide in varved clays. PhD Thesis, Utrecht University, the Netherlands.Google Scholar
  36. Otto JC, Sass O (2006) Comparing geophysical methods for talus slope investigations in the Turtmann valley (Swiss Alps). Geomorphology 76(3-4): 257–272. DOI: 10.1016/j.geomorph.2005.11.008CrossRefGoogle Scholar
  37. Park CB, Miller RD, Xia J (1999) Multi-channel analysis of surface waves. Geophysics 64 (3): 800–808. DOI: 10.4133/1.3445516CrossRefGoogle Scholar
  38. Reynolds JM (1997) An introduction to Applied and Environment Geophysics, 2nd Edition. John Wiley & Sons Chichester, UK. p 796.Google Scholar
  39. Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan plateau. Science 321(5892): 1054–1058. DOI: 10.1126/science.1155371CrossRefGoogle Scholar
  40. Torgoev A, Lamair L, Torgoev I, et al. (2013) A review of recent case studies of landslides investigated in the Tien Shan using microseismic and other geophysical methods, In: Earthquake-Induced Landslides. Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012. pp. 285–294. DOI: 10.1007/978-3-642-32238-9_29CrossRefGoogle Scholar
  41. Van Asch TWJ, Brinkhorst WH, Buist HJ, etj al. (1984) The development of landslides by retrogressive failure in varved clays. Zeitschrift fur Geomorphologie NF 4: 165–181. Available online: http: // (Accessed on 29 December 2015)Google Scholar
  42. Wu FQ, Fu BH, Li X, et al. (2008) Initial analysis of the mechanism of the Wenchuan Earthquake (Southwest China), 12 May 2008. Bulletin of Engineering Geology and the Environment 67(4): 453–455. DOI: 10.1007/s10064-008-0179-5CrossRefGoogle Scholar
  43. Xu Q, Chen J, Feng W, et al. (2009) Study of the seismic response of slopes by physical modeling. Journal of Sichuan University (Engineering Science Edition) 3: 039. DOI: 10.15961/j.jsuese.2009.03.009Google Scholar
  44. Xu Q, Zhang S, Dong XJ (2011) Genetic types of large-scale landslides induced by the Wenchuan earthquake [M]// Earthquake-Induced Landslides. Springer Berlin Heidelberg, pp 511–520. DOI: 10.1007/978-3-642-32238-9-54.Google Scholar
  45. Yang CW, Zhang JJ (2013) Landslide response of high steep hill with two-side slopes under ground shaking. Chinese Journal of Southwest Jiaotong University 48(3): 416–422. DOI: 10.3969/j.issn.0258-2724.2013.03.004Google Scholar
  46. Yamakawa Y, Kosugi K, Masaoka N, Tada, et al. (2010) Use of a combined penetrometer–moisture probe together with geophysical methods to survey hydrological properties of a natural slope. Vadose Zone Journal 9(3): 768. DOI: 10.2136/vzj2010.0012CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Mountain Hazards and Earth Surface ProcessChinese Academy of SciencesChengduChina
  2. 2.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations