Skip to main content
Log in

Dynamic process simulation with a Savage-Hutter type model for the intrusion of landslide into river

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Natural damming of rivers by mass movements is a very common and potentially dangerous phenomena which has been documented all over the world. In this paper, a two-layer model of Savage-Hutter type is presented to simulate the dynamic procedure for the intrusion of landslide into rivers. The two-layer shallow water system is derived by depth averaging the incompressible Navier-Stokes equations with the hydrostatic assumption. A high order accuracy scheme based on the finite volume method is proposed to solve the presented model equations. Several numerical tests are performed to verify the realiability and feasibility of the proposed model. The numerical results indicate that the proposed method can be competent for simulating the dynamic process of landslide intrusion into the river. The interaction effect between both layers has a significant impact on the landslide movement, water fluctuation and wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott MB (1979) Elements of the theory of free surface flows. Pitman, London.

    Google Scholar 

  • Abgrall R, Karni S (2009) Two-layer shallow water system: a relaxation approach. SIAM Journal on Scientific Computing 31(3): 1603–1627. DOI: 10.1137/06067167X

    Article  Google Scholar 

  • Benkhaldoun F, Sari S, Seaid M (2012) A flux-limiter method for dam-break flows over erodible sediment beds. Applied Mathematical Modelling 36(10): 4847–4861. DOI: 10.1016/j.apm.2011.11.088

    Article  Google Scholar 

  • Berthon C, Coudière Y, Desveaux V (2014) Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction (DMGR). SAIM: Mathematical Modelling and Numerical Analysis 48(02): 583–602. DOI: 10.1051/m2an/2013105

    Google Scholar 

  • Biscarini C (2010) Computational fluid dynamics modelling of landslide generated water waves. Landslides 7(2): 117–124. DOI: 10.1007/s10346-009-0194-z

    Article  Google Scholar 

  • Bommer JJ, Rodríguez CE (2002) Earthquake-induced landslides in Central America. Engineering Geology 63(3): 189–220. DOI: 10.1016/S0013-7952(01)00081-3

    Article  Google Scholar 

  • Bouchut F, Mangeney-Castelnau A, Perthame B, et al. (2003) A new model of Saint Venant and Savage-Hutter type for gravity driven shallow flows. Comptes Rendus Mathematique 336(6): 531–536. DOI: 10.1016/S1631-073X(03)00117-1

    Article  Google Scholar 

  • Brufau P, García-Navarro P, Vázquez-Cendón ME (2004) Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography. International Journal for Numerical Methods in Fluids 45(10): 1047–1082. DOI: 10.1002/fld.729

    Article  Google Scholar 

  • Casagli N, Ermini L (1999) Geomorphic analysis of landslide dams in the northern Apennine. Transactions Japanese Geomorphological Union 20(3): 219–249.

    Google Scholar 

  • Camarri S, Salvetti MV (2013) Numerical diffusion based on high-order derivatives in MUSCL schemes. Direct and Large-Eddy Simulation IV 8: 237.

    Article  Google Scholar 

  • Capart H, Young DL (2002) Two-layer shallow water computations of torrential geomorphic flows. In: Proceedings of River Flow. pp 1003–1012.

    Google Scholar 

  • Castro MJ, Garcia-Rodriguez JA, González-Vida JM, et al. (2004) Numerical simulation of two-layer shallow water flows through channels with irregular geometry. Journal of Computational Physics 195(1): 202–235. DOI: 10.1016/j.jcp.2003.08.035

    Article  Google Scholar 

  • Chen SC, Peng SH (2006) Two-dimensional numerical model of two-layer shallow water equations for confluence simulation. Advances in water resources 29(11): 1608–1617. DOI: 10.1016/j.advwatres.2005.12.001

    Article  Google Scholar 

  • Chen SC, Peng SH, Capart H (2007) Two-layer shallow water computation of mud flow intrusions into quiescent water. Journal of Hydraulic Research 45(1): 13–25. DOI: 10.1080/00221686.2007.9521739

    Article  Google Scholar 

  • Chertock A, Kurganov A, Qu Z, et al. (2013) Three-Layer Approximation of Two-Layer Shallow Water Equations. Mathematical Modelling and Analysis 18(5): 675–693. DOI: 10.3846/13926292.2013.869269

    Article  Google Scholar 

  • Coico P, Calcaterra D, De Pippo T, et al. (2013) A Preliminary Perspective on Landslide Dams of Campania Region, Italy. In: Landslide Science and Practice. Springer Berlin Heidelberg. pp 83–90. DOI: 10.1007/978-3-642-31319-6_12

    Chapter  Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30(1): 79–93. DOI: 10.1016/S0169-555X(99)00046-X

    Article  Google Scholar 

  • Cui P, Zhu YY, Han YS, et al. (2009) The 12 May Wenchuan earthquake induced landslide lakes: distribution and preliminary risk evaluation. Landslides 6: 209–223. DOI: 10.1007/s10346-009-0160-9

    Article  Google Scholar 

  • Dai FC, Lee CF, Deng JH, et al. (2005) The 1786 earthquaketriggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 65(3): 205–221. DOI: 10.1016/j.geomorph.2004.08.011.

    Article  Google Scholar 

  • Fernandez-Nieto ED (2008) A new Savage-Hutter type model for submarine avalanches and generated tsunami. Journal of Computational Physics 227(16): 7720–7754. DOI: 10.1016/j.jcp.2008.04.039

    Article  Google Scholar 

  • Gottardi G, Venutelli M (2004) Central scheme for twodimensional dam-break flow simulation. Advances in Water Resources 27(3): 259–268. DOI: 10.1016/j.advwatres.2003. 12.006

    Article  Google Scholar 

  • Gray JMNT (2001) Granular flow in partially filled slowly rotating drums. Journal of Fluid Mechanics 441: 1–29. DOI: 10.1017/S0022112001004736.

    Article  Google Scholar 

  • Hewitt K (1998) Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology 26(1): 47–80. DOI: 10.1016/S0169-555X(98)00051-8

    Article  Google Scholar 

  • Hungr O (1995) A model for the run-out analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal 32: 610–623.

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three dimensional terrain, 1. Coulomb mixture theory. Journal of Geophysical Research 106(B1): 537–552. DOI: 10.1029/2000JB900329

    Article  Google Scholar 

  • Korup O (2002) Recent research on landslide dams-a literature review with special attention to New Zealand. Progress in Physical Geography 26: 206–235. DOI: 10.1191/0309133302pp333ra

    Article  Google Scholar 

  • Kafle J (2014) Dynamic interaction between a two-phase submarine landslide and a fluid reservoir. Doctoral dissertation, Kathmandu University.

    Google Scholar 

  • Kurganov A, Miller J (2014) Central-Upwind Scheme for Savage-Hutter Type Model of Submarine Landslides and Generated Tsunami Waves. Computational Methods in Applied Mathematics 14(2): 177–201. DOI: 10.1515/cmam-2014-0003

    Article  Google Scholar 

  • Liang D, Falconer RA, Lin B (2006) Comparison between TVDMacCormack and ADI-type solvers of the shallow water equations. Advances in Water Resources 29(12): 1833–1845. DOI: 10.1016/j.advwatres.2006.01.005

    Article  Google Scholar 

  • Massey C, McSaveney M, Davies T (2013) Evolution of an overflow channel across the Young River Landslide dam, New Zealand. In: Landslide Science and Practice, Springer Berlin Heidelberg. pp 43–49. DOI: 10.1007/978-3-642-31319-6_7

    Chapter  Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal 42(5): 1437–1448. DOI: 10.1139/T05-064

    Article  Google Scholar 

  • Moeyersons J, Trefois P, Nahimana L, Ilunga L, Vandecasteele I, Byizigiro V, Sadiki S (2010) River and landslide dynamics on the western Tanganyika rift border, Uvira, DR Congo: diachronic observations and a GIS inventory of traces of extreme geomorphologic activity. Natural Hazards 53(2): 291–311. DOI: 10.1007/s11069-009-9430-z

    Article  Google Scholar 

  • Montgomery PJ, Moodie TB (2003) Generalization of a relaxation scheme for systems of forced nonlinear hyperbolic conservation laws with spatially dependent flux functions. Studies in Applied Mathematics 110(1): 1–19. DOI: 10.1111/1467-9590.00228

    Article  Google Scholar 

  • Ouimet WB, Whipple KX, Royden LH, Sun Z, Chen Z (2007) The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin 119(11–12): 1462–1476. DOI: 10.1130/B26136.1

    Article  Google Scholar 

  • Ouyang C, He S, Xu Q, Luo Y, Zhang W (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Computers & Geosciences 52: 1–10. DOI: 10.1016/j.cageo.2012.08.024

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. International Journal for Numerical and Analytical Methods in Geomechanics 33(2): 143–172. DOI: 10.1002/nag.705

    Article  Google Scholar 

  • Pelanti M, Bouchut F, Mangeney A (2011) A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers. Journal of Computational Physics 230(3): 515–550. DOI: 10.1016/j.jcp.2010.10.001

    Google Scholar 

  • Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 363(1832): 1573–1601. DOI: 10.1098/rsta.2005.1596

    Article  Google Scholar 

  • Pudasaini SP (2012) A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface (2003-2012) 117(F3). DOI: 10.1029/2011JF002186

    Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199: 177–215. DOI: 10.1017/S0022112089000340

    Article  Google Scholar 

  • Simpson G, Castelltort S (2006) Coupled model of surface water flow, sediment transport and morphological evolution. Computers & Geosciences 32(10): 1600–1614. DOI: 10.1016/j.cageo.2006.02.020

    Article  Google Scholar 

  • Schuster RL, Fleming RW (1986) Economic losses and fatalities due to landslides. Bulletin of the Association of Engineering Geologists 23(1): 11–28. DOI: 10.2113/gseegeosci.xxiii.1.11

    Google Scholar 

  • Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media.

    Book  Google Scholar 

  • Tralli DM, Blom RG, Zlotnicki V, Donnellan A, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Journal of Photogrammetry and Remote Sensing 59(4): 185–198. DOI: 10.1016/j.isprsjprs.2005.02.002

    Article  Google Scholar 

  • Wang J, Ward SN, Xiao L (2015) Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chehalis Lake, Canada. Geophysical Journal International 201(1): 372–376. DOI: 10.1093/gji/ggv026

    Article  Google Scholar 

  • Zoppou C, Roberts S (2000) Numerical solution of the twodimensional unsteady dam break. Applied Mathematical Modelling 24(7): 457–475. DOI: 10.1016/S0307-904X(99) 00056-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-ming He.

Additional information

http://orcid.org/0000-0001-6336-4387

http://orcid.org/0000-0002-7372-8938

http://orcid.org/0000-0003-4456-8485

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., He, Sm. & OnYang, Cj. Dynamic process simulation with a Savage-Hutter type model for the intrusion of landslide into river. J. Mt. Sci. 13, 1265–1274 (2016). https://doi.org/10.1007/s11629-015-3439-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3439-4

Keywords

Navigation