Advertisement

Journal of Mountain Science

, Volume 13, Issue 5, pp 891–905 | Cite as

Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation

  • Chong Shi
  • De-jie Li
  • Kai-hua Chen
  • Jia-wen ZhouEmail author
Article

Abstract

Based on the principle of 3D particle flow code, a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide (in southwestern China) under the effect of water after a rainfall. The relationship between the micro-mechanical parameters and the macro-shear strength of the grain material is determined through numerical calibrations. Then the rainfall effect is considered in numerical simulations and rain-induced sliding processes are performed, which help us to discuss the mechanism of deformation and failure of this landslide together with field observations. It shows the Zhenggang landslide would most likely be activated in Zone I and would gain momentum in Zone II. In order to prevent the potential disaster, a tailing dam is advised to be designed about 175 m downstream from the current landslide boundary of Zone II. Verified by field observations, the presented landslide model can reflect the failure mechanism after rainfall. It can also provide a method to predict the potential disaster and draft disaster prevention measures.

Keywords

Back analysis Deposit avalanche Dynamic process Landslide Particle flow code 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althuwaynee OF, Pradhan B, Park HJ, et al. (2014) A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11(6): 1063–1078. DOI: 10.1007 /s10346-014-0466-0CrossRefGoogle Scholar
  2. Andrea P, Oiorgio B, Panlo DG (2002) Application of wavelet transform analysis to landslide generated waves. Coastal Engineering 44: 321–338. DOI: 10.1016/S0378-3839(01)00040-0Google Scholar
  3. Bui DT, Pradhan B, Revhaug I, et al. (2012) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171: 12–29. DOI: 10.1016/j.geomorph.2012.04.023Google Scholar
  4. Cascini L, Calvello M, Grimaldi GM (2014) Displacement trends of slow-moving landslides: Classification and forecasting. Journal of Mountain Science 11(3): 592–606. DOI: 10.1007/s11629-013-2961-5CrossRefGoogle Scholar
  5. Chang KJ, Taboada A (2009) Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research: Earth Surface 114: 2003–2012. DOI: 10.1029/2009JF001469Google Scholar
  6. Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslide in the Nepal Himalaya. Geomorphology 100(3): 429–443. DOI: 10.1016/j.geomorph.2008.01.014CrossRefGoogle Scholar
  7. Ge YG, Cui P, Su FH, et al. (2014) Case history of the disastrous debris flows of Tianmo Watershed in Bomi County, Tibet, China: Some mitigation suggestions. Journal of Mountain Science 11(5): 1253–1265. DOI: 10.1007/s11629-014-2579-2CrossRefGoogle Scholar
  8. Fakhimi A, Villegas T (2007) Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mechanics and Rock Engineering 40(2): 193–211. DOI: 10.1007/s00603-006-0095-6CrossRefGoogle Scholar
  9. Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Computers & Geosciences 35: 978–992. DOI: 10.1016/j.cageo.2007.12.003CrossRefGoogle Scholar
  10. Itasca Consulting Group, Inc (2006) PFC3D users’ manual. Minneapolis, USA: Itasca Consulting Group, Inc.Google Scholar
  11. Jaiswal P, Van Westen CJ (2009) Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 112(1): 96–105. DOI: 10.1016/j.geomorph.2009.05.008CrossRefGoogle Scholar
  12. Kuo CY, Tai YC, Bouchut F, et al. (2009) Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography. Engineering Geology, 104: 181–189. DOI:10.1016/j.enggeo.2008.10.003CrossRefGoogle Scholar
  13. Lee CT, Huang CC, Lee JF, et al. (2008) Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology 100(1): 43–58. DOI: 10.1016/j.enggeo.2008.03.004.CrossRefGoogle Scholar
  14. Melchiorre C, Matteucci M, Azzoni A, et al. (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94(3): 379–400. DOI: 10.1016/j.geomorph.2006.10.035.CrossRefGoogle Scholar
  15. Melchiorre C, Castellanos Abella EA, Van Westen CJ, et al. (2011) Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantanamo, Cuba. Computers & Geosciences 37: 410–425. DOI: 10.1016/j.cageo.2010.10.004CrossRefGoogle Scholar
  16. Poisel R, Preh A (2008) 3Dlandslide runout modeling using the particle flow code PFC3D. Taylor and Francis Group, London: 873–879. DOI: 10.1201/9780203885284-c110Google Scholar
  17. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. International journal of Rock Mechanics & Mining Science 41(8): 1329–1364. DOI: 10.1016/j.ijrmms.2004.09.011CrossRefGoogle Scholar
  18. Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences 60(5): 1037–1054. DOI: 10.1007/s12665-009-0245-8CrossRefGoogle Scholar
  19. Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51: 350–365. DOI: 10.1016/j.cageo.2012.08.023CrossRefGoogle Scholar
  20. Prochaska AB, Santi PM, Cannon SH (2008) Debris-flow run out predictions based on the average channel slope (ACS). Engineering Geology 98(1-2): 29–40. DOI: 10.1016/j.enggeo. 2008.01.011CrossRefGoogle Scholar
  21. Rosi A, Segoni S, Catani F, et al. (2012) Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). Journal of Geographical Sciences 22(4): 617–629. DOI: 10.1007/s11442-012-0951-0CrossRefGoogle Scholar
  22. Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan. Geomorphology 118(1): 167–175. DOI: 10.1016/j.geomorph.2009.12.016CrossRefGoogle Scholar
  23. Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Systems with Applications 38: 8208–8219. DOI: 10.1016/j.eswa.2010.12.167CrossRefGoogle Scholar
  24. Song Y, Gong J, Gao S, et al. (2012) Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China. Computers & Geosciences 42: 189–199. DOI: 10.1016/j.cageo.2011.09.011CrossRefGoogle Scholar
  25. Tang CL, Hu JC, Lin ML, et al. (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Engineering Geology 106(1): 1–19. DOI: 10.1016/j.enggeo.2009.02.011.CrossRefGoogle Scholar
  26. Tien Bui D, Tuan TA, Klempe H, et al. (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 8(9): 1–18. DOI: 10.1007/s10346-015-0557-6Google Scholar
  27. Tien Bui D, Ho TC, Revhaug I, et al. (2014) Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles. In: Buchroithner M, Prechtel N, Burghardt D (eds.), Cartography from Pole to Pole. Springer, Berlin, Heidelberg. pp 303–317. DOI: 10.1007/978-3-642-32618-9_22CrossRefGoogle Scholar
  28. Tien Bui D, Pradhan B, Lofman O, et al. (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96: 28–40. DOI: 10.1016/j.catena.2012.04.001CrossRefGoogle Scholar
  29. Tien Bui D, Pradhan B, Revhaug I, et al. (2015) A novel hybrid evidential belief function based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics, Natural Hazards and Risk 6(3): 243–271. DOI: 101080/194757052013843206CrossRefGoogle Scholar
  30. Tiranti D, Rabuffetti D (2010) Estimation of rainfall thresholds triggering shallow landslides for an operational warning system implementation. Landslides 7(4): 471–481. DOI: 10.1007/s10346-010-0198-8CrossRefGoogle Scholar
  31. Wang F, Sassa K (2010) Landslide simulation by a geotechnical model combined with a model for apparent friction change. Physics and Chemistry of the Earth 35: 149–161. DOI: 10.1016/j.pce.2009.07.006CrossRefGoogle Scholar
  32. Wu JH, Chen CH (2011) Application of DDA to simulate characteristics of the Tsaoling landslide. Computers and Geotechnics 38(5): 741–750. DOI: 10.1016/j.compgeo.2011.04.003.CrossRefGoogle Scholar
  33. Yang ZH, Lan HX, Liu HJ, et al. (2015) Post-earthquake Rainfall-triggered Slope Stability Analysis in the Lushan Area. Journal of Mountain Science 12(1): 232–242. DOI: 10.1007/s11629-013-2839-6CrossRefGoogle Scholar
  34. Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio,logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences 35(6): 1125–1138. DOI: 10.1016/j.cageo.2008.08.007CrossRefGoogle Scholar
  35. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. International Journal of Rock Mechanics and Mining Sciences 44(6): 871–889. DOI: 10.1016/j.ijrmms.2007.01.004CrossRefGoogle Scholar
  36. Zhou J, Xu W, Yang X, et al. (2010) The 28 October 1996 landslide and analysis of the stability of the current Huashiban slope at the Liangjiaren Hydropower Station, Southwest China. Engineering Geology 114(1-2): 45–56. DOI: 10.1016/j.enggeo.2010.04.001CrossRefGoogle Scholar
  37. Zhou J, Cui P, Yang X (2013a) Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. Journal of Asian Earth Sciences 76: 70–84. DOI: 10.1016/j.jseaes.2013.08.007CrossRefGoogle Scholar
  38. Zhou J, Cui P, Fang H (2013b) Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 10(3): 331–342. DOI: 10.1007/s10346-013-0387-3CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chong Shi
    • 1
  • De-jie Li
    • 2
  • Kai-hua Chen
    • 2
  • Jia-wen Zhou
    • 3
    Email author
  1. 1.Key Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringHohai UniversityNanjingChina
  2. 2.Institute of Geotechnical ResearchHohai UniversityNanjingChina
  3. 3.State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina

Personalised recommendations