Skip to main content
Log in

Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Based on the principle of 3D particle flow code, a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide (in southwestern China) under the effect of water after a rainfall. The relationship between the micro-mechanical parameters and the macro-shear strength of the grain material is determined through numerical calibrations. Then the rainfall effect is considered in numerical simulations and rain-induced sliding processes are performed, which help us to discuss the mechanism of deformation and failure of this landslide together with field observations. It shows the Zhenggang landslide would most likely be activated in Zone I and would gain momentum in Zone II. In order to prevent the potential disaster, a tailing dam is advised to be designed about 175 m downstream from the current landslide boundary of Zone II. Verified by field observations, the presented landslide model can reflect the failure mechanism after rainfall. It can also provide a method to predict the potential disaster and draft disaster prevention measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althuwaynee OF, Pradhan B, Park HJ, et al. (2014) A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11(6): 1063–1078. DOI: 10.1007 /s10346-014-0466-0

    Article  Google Scholar 

  • Andrea P, Oiorgio B, Panlo DG (2002) Application of wavelet transform analysis to landslide generated waves. Coastal Engineering 44: 321–338. DOI: 10.1016/S0378-3839(01)00040-0

    Google Scholar 

  • Bui DT, Pradhan B, Revhaug I, et al. (2012) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171: 12–29. DOI: 10.1016/j.geomorph.2012.04.023

    Google Scholar 

  • Cascini L, Calvello M, Grimaldi GM (2014) Displacement trends of slow-moving landslides: Classification and forecasting. Journal of Mountain Science 11(3): 592–606. DOI: 10.1007/s11629-013-2961-5

    Article  Google Scholar 

  • Chang KJ, Taboada A (2009) Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research: Earth Surface 114: 2003–2012. DOI: 10.1029/2009JF001469

    Google Scholar 

  • Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslide in the Nepal Himalaya. Geomorphology 100(3): 429–443. DOI: 10.1016/j.geomorph.2008.01.014

    Article  Google Scholar 

  • Ge YG, Cui P, Su FH, et al. (2014) Case history of the disastrous debris flows of Tianmo Watershed in Bomi County, Tibet, China: Some mitigation suggestions. Journal of Mountain Science 11(5): 1253–1265. DOI: 10.1007/s11629-014-2579-2

    Article  Google Scholar 

  • Fakhimi A, Villegas T (2007) Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mechanics and Rock Engineering 40(2): 193–211. DOI: 10.1007/s00603-006-0095-6

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Computers & Geosciences 35: 978–992. DOI: 10.1016/j.cageo.2007.12.003

    Article  Google Scholar 

  • Itasca Consulting Group, Inc (2006) PFC3D users’ manual. Minneapolis, USA: Itasca Consulting Group, Inc.

    Google Scholar 

  • Jaiswal P, Van Westen CJ (2009) Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 112(1): 96–105. DOI: 10.1016/j.geomorph.2009.05.008

    Article  Google Scholar 

  • Kuo CY, Tai YC, Bouchut F, et al. (2009) Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography. Engineering Geology, 104: 181–189. DOI:10.1016/j.enggeo.2008.10.003

    Article  Google Scholar 

  • Lee CT, Huang CC, Lee JF, et al. (2008) Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology 100(1): 43–58. DOI: 10.1016/j.enggeo.2008.03.004.

    Article  Google Scholar 

  • Melchiorre C, Matteucci M, Azzoni A, et al. (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94(3): 379–400. DOI: 10.1016/j.geomorph.2006.10.035.

    Article  Google Scholar 

  • Melchiorre C, Castellanos Abella EA, Van Westen CJ, et al. (2011) Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantanamo, Cuba. Computers & Geosciences 37: 410–425. DOI: 10.1016/j.cageo.2010.10.004

    Article  Google Scholar 

  • Poisel R, Preh A (2008) 3Dlandslide runout modeling using the particle flow code PFC3D. Taylor and Francis Group, London: 873–879. DOI: 10.1201/9780203885284-c110

    Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. International journal of Rock Mechanics & Mining Science 41(8): 1329–1364. DOI: 10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences 60(5): 1037–1054. DOI: 10.1007/s12665-009-0245-8

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51: 350–365. DOI: 10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  • Prochaska AB, Santi PM, Cannon SH (2008) Debris-flow run out predictions based on the average channel slope (ACS). Engineering Geology 98(1-2): 29–40. DOI: 10.1016/j.enggeo. 2008.01.011

    Article  Google Scholar 

  • Rosi A, Segoni S, Catani F, et al. (2012) Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). Journal of Geographical Sciences 22(4): 617–629. DOI: 10.1007/s11442-012-0951-0

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan. Geomorphology 118(1): 167–175. DOI: 10.1016/j.geomorph.2009.12.016

    Article  Google Scholar 

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Systems with Applications 38: 8208–8219. DOI: 10.1016/j.eswa.2010.12.167

    Article  Google Scholar 

  • Song Y, Gong J, Gao S, et al. (2012) Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China. Computers & Geosciences 42: 189–199. DOI: 10.1016/j.cageo.2011.09.011

    Article  Google Scholar 

  • Tang CL, Hu JC, Lin ML, et al. (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Engineering Geology 106(1): 1–19. DOI: 10.1016/j.enggeo.2009.02.011.

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Klempe H, et al. (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 8(9): 1–18. DOI: 10.1007/s10346-015-0557-6

    Google Scholar 

  • Tien Bui D, Ho TC, Revhaug I, et al. (2014) Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles. In: Buchroithner M, Prechtel N, Burghardt D (eds.), Cartography from Pole to Pole. Springer, Berlin, Heidelberg. pp 303–317. DOI: 10.1007/978-3-642-32618-9_22

    Chapter  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, et al. (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96: 28–40. DOI: 10.1016/j.catena.2012.04.001

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Revhaug I, et al. (2015) A novel hybrid evidential belief function based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics, Natural Hazards and Risk 6(3): 243–271. DOI: 101080/194757052013843206

    Article  Google Scholar 

  • Tiranti D, Rabuffetti D (2010) Estimation of rainfall thresholds triggering shallow landslides for an operational warning system implementation. Landslides 7(4): 471–481. DOI: 10.1007/s10346-010-0198-8

    Article  Google Scholar 

  • Wang F, Sassa K (2010) Landslide simulation by a geotechnical model combined with a model for apparent friction change. Physics and Chemistry of the Earth 35: 149–161. DOI: 10.1016/j.pce.2009.07.006

    Article  Google Scholar 

  • Wu JH, Chen CH (2011) Application of DDA to simulate characteristics of the Tsaoling landslide. Computers and Geotechnics 38(5): 741–750. DOI: 10.1016/j.compgeo.2011.04.003.

    Article  Google Scholar 

  • Yang ZH, Lan HX, Liu HJ, et al. (2015) Post-earthquake Rainfall-triggered Slope Stability Analysis in the Lushan Area. Journal of Mountain Science 12(1): 232–242. DOI: 10.1007/s11629-013-2839-6

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio,logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences 35(6): 1125–1138. DOI: 10.1016/j.cageo.2008.08.007

    Article  Google Scholar 

  • Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. International Journal of Rock Mechanics and Mining Sciences 44(6): 871–889. DOI: 10.1016/j.ijrmms.2007.01.004

    Article  Google Scholar 

  • Zhou J, Xu W, Yang X, et al. (2010) The 28 October 1996 landslide and analysis of the stability of the current Huashiban slope at the Liangjiaren Hydropower Station, Southwest China. Engineering Geology 114(1-2): 45–56. DOI: 10.1016/j.enggeo.2010.04.001

    Article  Google Scholar 

  • Zhou J, Cui P, Yang X (2013a) Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. Journal of Asian Earth Sciences 76: 70–84. DOI: 10.1016/j.jseaes.2013.08.007

    Article  Google Scholar 

  • Zhou J, Cui P, Fang H (2013b) Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 10(3): 331–342. DOI: 10.1007/s10346-013-0387-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-wen Zhou.

Additional information

http://orcid.org/0000-0003-1386-0651

http://orcid.org/0000-0003-2827-3820

http://orcid.org/0000-0002-3512-5175

http://orcid.org/0000-0002-6817-1071

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Li, Dj., Chen, Kh. et al. Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation. J. Mt. Sci. 13, 891–905 (2016). https://doi.org/10.1007/s11629-014-3399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3399-0

Keywords

Navigation