Skip to main content
Log in

Estimation of soil reinforcement by the roots of four post-dam prevailing grass species in the riparian zone of Three Gorges Reservoir, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure, especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density (RLD) and root area ratio (RAR) were measured by using the WinRHIZO image analysis system. Root tensile strength (TR) was performed using a manual dynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu’s perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to 20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers (>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides (62.26 MPa) followed by C. dactylon (51.49 MPa), H. compressa (50.66 MPa), and H. altissima (48.81 MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 kPa for H. altissima followed by H. compressa (21.1 kPa), P. paspaloides (19.5 kPa), and C. dactylon (15.4 kPa) at 0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy B, Rutherfurd ID (2001) The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological Processes 15: 63–79. DOI: 10.1002/hyp.152

    Article  Google Scholar 

  • Adhikari AR, Gautam MR, Yu, ZB, et al. (2013) Estimation of root cohesion for desert shrub species in the Lower Colorado riparian ecosystem and its potential for streambank stabilization. Ecological Engineering 51: 33–44. DOI: 10.1016/j.ecoleng.2012.12.005

    Article  Google Scholar 

  • Bao YH, Tang Q, He XB, et al. (2013) Soil erosion in the riparian zone of the Three Gorges Reservoir, China. Hydrology Research. DOI:10.2166/nh.2013.291

    Google Scholar 

  • Bischetti GB, Chiaradia EA, Simonato T, et al. (2005) Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and soil, 278: 11–22. DOI: 10.1007/978-1-4020-5593-5_4

    Article  Google Scholar 

  • Burylo M, Hudek C, Rey F (2011) Soil reinforcement by the roots of six dominant species on eroded mountainous manly slopes (Southern Alps, France). Catena 84: 70–78. DOI: 10.1016/j.catena.2010.09.007

    Article  Google Scholar 

  • Sun BX, Sylvia MP (2006) Poaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China. Vol. 22. Science Press, Beijing and Missouri Botanical Garden Press, St Louis. pp 482–493 + 640-642.

    Google Scholar 

  • Chen SL, Sylvia MP (2006) Poaceae. In: Wu ZY, Raven PH, Hong DY (eds.) Flora of China. Vol. 22. Science Press, Beijing and Missouri Botanical Garden Press, St Louis. pp 526–530.

    Google Scholar 

  • Comino E, Marengo P (2010) Root tensile strength of three shrub species: Rosa canina, cotoneaster dammeri and juniperus horizontalis soil reinforcement estimation by laboratory tests. Catena 82: 227–235. DOI: 10.1016/j.catena. 2010.06.010

    Article  Google Scholar 

  • Comino E, Marengo P, Rolli V (2010) Root reinforcement effect of different grass species: A comparison between experimental and models results. Soil and Tillage research 110: 60–68. DOI:10.1016/j.still.2010.06.006

    Article  Google Scholar 

  • Coutts MP, Nielsen CCN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant and soil 217: 1–15. DOI: 10.1023/A:1004578032481

    Article  Google Scholar 

  • Craine JM (2006) Competition for nutrients and optimal root allocation. Plant and soil 285: 171–185. DOI: 10.1007/s11104-006-9002-x

    Article  Google Scholar 

  • Day SD, Wiseman PE, Dickinson SB, et al. (2010) Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboriculture and Urban Forestry 36: 193–205.

    Google Scholar 

  • De Baets S, Poesen J, Knapen A, Galindo P (2007) Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surface Processes and Landforms 32: 1323–1345. DOI: 10.1002/esp.1470

    Article  Google Scholar 

  • De Baets S, Poesen J, Reubens B, et al. (2008) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant and soil 305: 207–226. DOI: 10.1007/s11104-008-9553-0

    Article  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant and soil 278: 119–134. DOI: 10.1007/978-1-4020-5593-5_17

    Article  Google Scholar 

  • Ennos AR (1990) The Anchorage of Leek Seedlings-the Effect of Root Length and Soil Strength. Annals of Botany 65: 409–416.

    Google Scholar 

  • FAO (2015) Grassland Index. A searchable catalogue of grass and forage legumes. FAO, Rome, Italy. Available online at: http://www.fao.org/ag/AGP/AGPC/doc/GBASE/commonna mes/commonsearch.htm (Accessed on 15 January 2015)

    Google Scholar 

  • Fan CC, Su CF (2008) Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecological Engineering 33: 157–166. DOI:10.1016/j.ecoleng.2008.02.013

    Article  Google Scholar 

  • Fu BJ, Wu BF, Lü YH, et al. (2010) Three Gorges Project: Efforts and challenges for the environment. Progress in Physical Geography 34: 741–754. DOI: 10.1177/03091 33310370286

    Article  Google Scholar 

  • Genet M, Stokes A, Salin F, et al. (2005) The influence of cellulose content on tensile strength in tree roots. Plant and soil 278: 1–9. DOI: 10.1007/s11104-005-8768-6

    Article  Google Scholar 

  • Giadrossich F, Schwarz M, Cohen D, et al (2013) Mechanical interactions between neighbouring roots during pullout tests. Plant and Soil 367: 391–406. DOI: 10.1007/s11104-012-1475-1

    Article  Google Scholar 

  • Glinski J, Lipiec J (1990) Soil physical conditions and plant roots. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Goodman AM, Ennos AR (1999) The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annals of Botany 83: 293–302. DOI: 10.1006/anbo.1998.0822

    Article  Google Scholar 

  • Gray DH (1974) Reinforcement and Stabilization of Soil by Vegetation. Journal of the Geotechnical Engineering Division 100: 695–699.

    Google Scholar 

  • Gray DH, Barker D (2004) Root-soil mechanics and interaction. In: Bennett SJ, Simon A. (eds.), Riparian Vegetation and Fluvial Geomorphology., American Geophysical Union., New York, NY, USA. pp. 113–123.

    Chapter  Google Scholar 

  • Gray DH, Leiser AT (1982) Biotechnical Slope Protection and Erosion Control, Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Gray DH, Sotir RB (1996) Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control, John Wiley and Sons, New York, USA.

    Google Scholar 

  • Greenwood J R (2007) SLIP4EX -A program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability 103: 193–202. DOI: 10.1007/978-1-4020-5593-5_18

    Google Scholar 

  • Gyssels G, Poesen J (2003) The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Processes and Landforms 28: 371–384. DOI: 10.1002/esp.447

    Article  Google Scholar 

  • Gyssels G, Poesen J, Bochet E, et al. (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Progress in Physical Geography 29: 189–217. DOI: 10.1191/0309133305pp443ra

    Article  Google Scholar 

  • Hathaway RL, Penny D (1975) Root strength in some Populus and Salix clones. New Zealand Journal of Botany 13: 333–344. DOI: 10.1080/0028825X.1975.10430330

    Article  Google Scholar 

  • He XB, Bao YH, Nan HW, et al. (2009) Tillage pedogenesis of purple soils in southwestern China. Journal of Mountain Science 6: 205–210. DOI: 10.1007/s11629-009-1038-y

    Article  Google Scholar 

  • He YR (2003) Purple soil in china (2). Science Press, Beijing, China. pp 59–90. (In Chinese)

    Google Scholar 

  • Hefting MM, Clement JC, Bienkowski P, et al. (2005) The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering 24: 465–482. DOI: 10.1016/j.ecoleng.2005.01.003

    Article  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162: 9–24. DOI: 10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  • Hubble TC, Docker BB, Rutherfurd ID (2010) The role of riparian trees in maintaining riverbank stability: A review of Australian experience and practice. Ecological Engineering 36: 292–304. DOI:10.1016/j.ecoleng.2009.04.006

    Article  Google Scholar 

  • Li Y, Zhu XM, Tian JY, et al. (1990) A preliminary-study on mechanism of soil anti-scourability on the loess plateau. Chinese Science Bulletin 35: 1565–1569.

    Google Scholar 

  • Li Y, Zhu XM, Tian JY, et al. (1991) Effectiveness of plant-roots to increase the anti-scourability of soil on the loess plateau. Chinese Science Bulletin 36: 2071–2082.

    Google Scholar 

  • Li Y, Xu XQ, Zhu XM (1993) Effective model on the roots of chinese pine plantation to improve the physical properties of soil in the loess plateau. Scientia Silvae Sinicae 29: 193–198. (In Chinese)

    Google Scholar 

  • Liu YF (2010) Bank Collapse Erosion in Water Level Fluctuating Zone of the Three Gorges Reservoir via BSTEM. Master thesis, the Graduate School of Chinese Academy of Sciences, Beijing., China. pp 71–73. (in Chinese)

    Google Scholar 

  • Lu ZJ, Li LF, Jiang MX, et al. (2010) Can the soil seed bank contribute to revegetation of the drawdown zone in the Three Gorges Reservoir Region? Plant Ecology 209: 153–165. DOI: 10.1007/s11258-010-9732-y

    Article  Google Scholar 

  • Mao Z, Yang M, Bourrier F, et al. (2014) Evaluation of root reinforcement models using numerical modelling approaches. Plant and soil 381: 249–270. DOI: 10.1007/s11104-014-2116-7

    Article  Google Scholar 

  • Mattia C, Bischetti GB, Gentile F (2005) Biotechnical characteristics of root systems of typical Mediterranean species. Plant and soil 278: 23–32. DOI: 10.1007/s11104-005-7930-5

    Article  Google Scholar 

  • Mickovski SB, Hallett PD, Bransby MF, et al. (2009) Mechanical Reinforcement of Soil by Willow Roots: Impacts of Root Properties and Root Failure Mechanism. Soil Science Society of America Journal 73: 1276–1285. DOI: 10.2136/sssaj2008.0172

    Article  Google Scholar 

  • Mickovski SB, Van Beek LPH (2009) Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate. Plant and Soil 324: 43–56. DOI: 10.1007/s11104-009-0130-y

    Article  Google Scholar 

  • New T, Xie ZQ (2008) Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam. Biodiversity and Conservation 17: 3149–3163. DOI: 10.1007/s10531-008-9416-2

    Article  Google Scholar 

  • Nilaweera, NS, Nutalaya P (1999) Role of tree roots in slope stabilization. Bulletin of Engineering Geology and the Environment 57: 337–342.

    Article  Google Scholar 

  • Norris JE (2005) Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. Plant and Soil 278: 43–53. DOI: 10.1007/s11104-005-1301-0

    Article  Google Scholar 

  • Operstein V, Frydman S (2000) The influence of vegetation on soil strength. Proceedings of the ICE -Ground Improvement 4: 81–89. DOI: 10.1680/grim.2000.4.2.81

    Article  Google Scholar 

  • Pollen-Bankhead N, Simon A (2010) Hydrologic and hydraulic effects of riparian root networks on streambank stability: is mechanical root-reinforcement the whole story? Geomorphology 116: 353–362. DOI: 10.1016/j.geomorph. 2009.11.013

    Article  Google Scholar 

  • Pollen N, Simon A (2005) Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research 41: 1–11. DOI: 10.1029/2004WR003801

    Article  Google Scholar 

  • Polvi LE, Wohl E, Merritt DM (2014) Modeling the functional influence of vegetation type on streambank cohesion. Earth Surface Processes and Landforms 39: 1245–1258. DOI: 10.1002/esp.3577

    Article  Google Scholar 

  • Quine CP, Burnand AC, Coutts MP, et al. (1991) Effects of Mounds and Stumps on the Root Architecture of Sitka Spruce on a Peaty Gley Restocking Site. Forestry 64: 385–401. DOI: 10.1093/forestry/64.4.385

    Article  Google Scholar 

  • Reubens B, Poesen J, Danjon F, et al. (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees-Structure and Function 21: 385–402. DOI: 10.1007/s00468-007-0132-4

    Article  Google Scholar 

  • Sarkar AN, Jenkins DA, Wyn Jones, RG (1979) Modifications to mechanical and mineralogical composition of soil within the rhizosphere. In Harley, JL and Russell RS, editors,. The soilplant interface. London: Academic Press.

  • Schwarz M, Lehmann P, Or D (2010) Quantifying lateral root reinforcement in steep slopes–from a bundle of roots to tree stands. Earth Surface Processes and Landforms 35: 354–367. DOI: 10.1002/esp.1927

    Article  Google Scholar 

  • Shi ZL, Wen AB, Zhang XB, et al. (2011) Comparison of the soil losses from 7Be measurements and the monitoring data by erosion pins and runoff plots in the three gorges reservoir region, China. Applied Radiation and Isotopes 69: 1343–1348. DOI: 10.1016/j.apradiso.2011.05.031

    Article  Google Scholar 

  • Simon A, Collison AJC (2002) Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms 27: 527–546. DOI: 10.1002/esp.325

    Article  Google Scholar 

  • Simon A, Pollen N, Langendoen E (2006) Influence of two woody riparian species on critical conditions for streambank stability: Upper Truckee River, California. Journal of the American Water Resources Association 42: 99–113. DOI: 10.1111/j.1752-1688.2006.tb03826.x

    Article  Google Scholar 

  • Smit AL, Bengough AG, Engels C, et al. (Eds.) (2000) Root methods: a handbook, Springer-Verlag, Berlin.

    Google Scholar 

  • Stokes A, Atger C, Bengough AG, et al. (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil 324: 1–30. DOI: 10.1007/s11104-009-0159-y

    Article  Google Scholar 

  • Tang Q, Bao YH, He XB, et al. (2014) Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China. Science of the Total Environment 479: 258–266. DOI: 10.1016/j.scitotenv.2014.01.122

    Article  Google Scholar 

  • Tenten N, Zeng B, Kazda M (2010) Soil stabilizing capability of three plant species growing on the Three Gorges Reservoir riverside. Journal of Earth Science 21: 888–896. DOI: 10.1007/s12583-010-0142-9

    Article  Google Scholar 

  • Thomas RE, Pollen-Bankhead N (2010) Modeling rootreinforcement with a fiber-bundle model and Monte Carlo simulation. Ecological Engineering 36: 47–61. DOI: 10.1016/j.ecoleng.2009.09.008

    Article  Google Scholar 

  • Tosi M (2007) Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 87: 268–283. DOI: 10.1016/j.geomorph.2006.09.019

    Article  Google Scholar 

  • Waldron L, Dakessian S (1981) Soil reinforcement by roots: calculation of increased soil shear resistance from root properties. Soil science 132: 427–435. DOI: 10.1097/00010694-198112000-00007

    Article  Google Scholar 

  • Wu TH (2013) Root reinforcement of soil: review of analytical models, test results, and applications to design. Canadian Geotechnical Journal 50: 259–274. DOI: 10.1139/cgj-2012-0160

    Article  Google Scholar 

  • Wu TH, McKinnell PM, Swanston DN (1979) Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal 16: 19–33. DOI: 10.1139/t79-003

    Article  Google Scholar 

  • Xu XB, Tan Y, Yang GS (2013) Environmental impact assessments of the Three Gorges Project in China: Issues and interventions. Earth-Science Reviews 124: 115–125. DOI: 10.1016/j.earscirev.2013.05.007

    Article  Google Scholar 

  • Ye C, Cheng XL, Zhang QF (2014) Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation. Environmental Science and Pollution Research 21(3): 2018–2031. DOI: 10.1007/s11356-013-2128-5

    Article  Google Scholar 

  • Ye C, Cheng XL, Zhang YL, et al. (2012) Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir, China. Ecological Engineering 38: 37–44. DOI: 10.1016/j.ecoleng.2011.10.005

    Article  Google Scholar 

  • Ye C, Li SY, Zhang YL, et al. (2011) Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. Journal of Hazardous Materials 191: 366–372. DOI: 10.1007/s10661-012-2547-7

    Article  Google Scholar 

  • Ye C, Zhang KR, Deng Q, et al. (2013) Plant communities in relation to flooding and soil characteristics in the water level fluctuation zone of the Three Gorges Reservoir, China. Environmental Science and Pollution Research 20: 1794–1802. DOI: 10.1007/s10661-012-2547-7

    Article  Google Scholar 

  • Zhang CB, Chen LH, Jiang J (2014) Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology 206: 196–202. DOI: 10.1016/j.geomorph.2013.09.024

    Article  Google Scholar 

  • Zhang ZY, Wan CY, Zheng ZW, et al. (2013) Plant community characteristics and their responses to environmental factors in the water level fluctuation zone of the three gorges reservoir in China. Environmental Science and Pollution Research 20: 7080–7091. DOI: 10.1007/s11356-013-1702-1

    Article  Google Scholar 

  • Zhao CM, Chen WL, Huang HD, et al. (2007) Spatial pattern of plant species diversity in the inundation and resettlement region of the Three Gorges Reservoir. Biodiversity Science 15: 510–522. DOI: 10.1360/biodiv.070084 (In Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-hai Bao.

Additional information

http://orcid.org/0000-0002-0570-2998

http://orcid.org/0000-0001-6786-1284

http://orcid.org/0000-0002-0773-5945

http://orcid.org/0000-0003-0861-9943

http://0rcid.0rg/0000-0003-1776-1490

http://orcid.org/0000-0002-3242-8357

http://orcid.org/0000-0003-218l-0304

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Rh., He, Xb., Bao, Yh. et al. Estimation of soil reinforcement by the roots of four post-dam prevailing grass species in the riparian zone of Three Gorges Reservoir, China. J. Mt. Sci. 13, 508–521 (2016). https://doi.org/10.1007/s11629-014-3397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3397-2

Keywords

Navigation