Journal of Mountain Science

, Volume 12, Issue 4, pp 841–853 | Cite as

Assessing post-storm forest dynamics in the pyrenees using high-resolution LIDAR data and aerial photographs

  • Ángela Blázquez-CasadoEmail author
  • José R. González-Olabarria
  • Santiago Martin-Alcón
  • Ariadna Just
  • Mariló Cabré
  • Lluís Coll


We evaluated how historical storm events have shaped the current forest landscape in three Pyrenean subalpine forests (NE Spain). For this purpose we related forest damage estimations obtained from multi-temporal aerial photographic comparisons to the current forest typology generated from airborne LiDAR data, and we examined the role of past natural disturbance on the current spatial distribution of forest structural types. We found six forest structural types in the landscape: early regeneration (T1 and T2), young even-aged stands (T3), uneven-aged stands (T4) and adult stands (T5 and T6). All of the types were related to the timing and severity of past storms, with early-regeneration structures being found in areas markedly affected in recent times, and adult stands predominating in those areas that had suffered lowest damage levels within the study period. In general, landscapes where high or medium levels of damage were recurrent also presented higher levels of spatial heterogeneity, whereas the opposite pattern was found in the less markedly affected landscape, characterized by the presence of large regular patches. Our results show the critical role that storm regimes in terms of timing and severity of past storms can play in shaping current forest structure and future dynamics in subalpine forests. The knowledge gained could be used to help define alternative forest management strategies oriented toward the enhancement of landscape heterogeneity as a measure to face future environmental uncertainty.


Storm regime Forest succession Forest structure Airborne LiDAR Spatial patterns Pyrenean Subalpine forests 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrian D, Esnault F, Calabri G (2000) Forest fires in the Mediterranean area. Unasylva 197(50): 35–41.Google Scholar
  2. Allen MS, Thapa V, Arévalo JR, et al. (2012) Windstorm damage and forest recovery: accelerated succession, stand structure, and spatial pattern over 25 years in two Minnesota forests. Plant Ecology 213(11): 1833–1842. DOI: 10.1007/s11258-012-01399CrossRefGoogle Scholar
  3. Ameztegui A, Coll L, Benavides R, Valladares F, et al. (2012) Understory light predictions in mixed conifer mountain forests: Role of aspect-induced variation in crown geometry and openness. Forest Ecology and Management 276:52–61. DOI: 10.1016/j.foreco.2012.03.021CrossRefGoogle Scholar
  4. Basterra L, Acuna L, Casado M, et al. (2012) Strength testing of Poplar duo beams, Populus x euramericana (Dode) Guinier cv. I-214, with fibre reinforcement. Construction and Building Materials 36:90–96. DOI: 10.1016/j.conbuildmat.2012.05.001CrossRefGoogle Scholar
  5. Batista WB, Platt WJ (2003) Tree Population Responses to Hurricane Disturbance: Syndromes in a South-Eastern USA Old-Growth Forest. Journal Ecology 91(2): 197–212.Google Scholar
  6. Bergeron Y, Leduc A, Harvey BD, et al. (2002) Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silva Fennica 36(1): 81–95. DOI: 10.14214/ sf.553CrossRefGoogle Scholar
  7. Bolte A, Ammer C, Lof M, et al. (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scandinavian Journal Forest Research 24(6): 473–482. DOI: 10.1080/028275 80903418224CrossRefGoogle Scholar
  8. Boucher Y, Grondin P (2012) Impact of logging and natural stand-replacing disturbances on high-elevation boreal landscape dynamics (1950-2005) in eastern Canada. Forest Ecology and Management 263: 229–239. DOI: 10.1016/j. foreco.2011.09.012CrossRefGoogle Scholar
  9. Brotons L, Aquilué N, De Caceres M, et al. (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 8(5): e62392. DOI: 10.1371/journal.pone.0062392CrossRefGoogle Scholar
  10. Canham CD, Papaik MJ, Latty EF (2001) Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Canadian Journal Forest Research 31(1): 1–10. DOI: 10.1139/X00-124CrossRefGoogle Scholar
  11. Cochran WG (1954) Some methods for strengthening the common X2 tests. Biometrics 10: 417–451. DOI: 10.2307/ 3001616CrossRefGoogle Scholar
  12. Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. Forest Snow and Landscape Research 77(1/2): 187–205.Google Scholar
  13. Doll D (2000) Historical statistics of major wind blowdown in western Europe since the mid-nineteenth century: a critical analysis (Statistiques historiques des grandes chablis éoliens en Europe occidentale depuis le milieu du XIX siècle: analyse critique). In: Collective expert on storms, the sensitivity of forest and their reconstruction. Records of the Enviroment INRA France N° 20 (Expertise collective sur les tempêtes, la sensibilité des forêts et sur leur reconstitution. Les Dossiers de l’Environnement I’INRA N° 20). France. pp 38–41. (In French)Google Scholar
  14. Falkowski MJ, Evans JS, Martinuzzi S, et al. (2009) Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment 113: 946–956. DOI: 10.1016/j.rse.2009.01.003CrossRefGoogle Scholar
  15. Forman RT (1995) Some general principles of landscape and regional ecology. Landscape Ecology 10(3): 133–142. DOI: 10.1007/BF00133027CrossRefGoogle Scholar
  16. Foster D, Fluet M, Boose E (1999) Human or natural disturbance: landscape-scale dynamics of the tropical forests of Puerto Rico. Ecological Applications 9(2): 555–572. DOI: 10.1890/1051-0761(1999)009[0555:HONDLS]2.0.CO;2CrossRefGoogle Scholar
  17. Gonzalez JR, Palahl M, Pukkala T (2005) Integrating fire risk considerations in forest management planning in Spain -a landscape level perspective. Landscape Ecology 20(8): 957–970. DOI: 10.1007/s10980-005-5388-8CrossRefGoogle Scholar
  18. Gracia C, Burriel JA, Ibanez JJ, et al. (2004) Ecological and forest inventory of Catalonia (Inventari Ecolôgic i Forestal de Catalunya). CREAF, Bellaterra, Barcelona, Spain. (Catalan)Google Scholar
  19. Hair JF, Black WC, Babin BJ, et al. (2006) Multivariate data analysis. (6th ed.) Prentice Hall, New Jersey, USA.Google Scholar
  20. Haire SL, McGarigal K (2010) Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landscape Ecology 25(7): 1055–1069. DOI: 10.1007/s10980-010-9480-3CrossRefGoogle Scholar
  21. Harcombe P, Greene S, Kramer M, et al. (2004) The influence of fire and windthrow dynamics on a coastal spruce-hemlock forest in Oregon, USA, based on aerial photographs spanning 40 years. Forest Ecology and Management 194(13):71–82. DOI: 10.1016/j.foreco.2004.02.016CrossRefGoogle Scholar
  22. Hayes JJ, Robeson SM (2011) Relationships between fire severity and post-fire landscape pattern following a large mixed-severity fire in the Valle Vidal, New Mexico, USA. Forest Ecology and Management 261(8): 1392–1400. DOI: 10.1016/j.foreco.2011.01.023CrossRefGoogle Scholar
  23. He HS, Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80(1): 81–99. DOI: 10.1890/0012-9658(1999)080[0081:SEASSO]2.0.CO;2CrossRefGoogle Scholar
  24. Jactel H, Nicoll BC, Branco M et al (2009) The influences of forest stand management on biotic and abiotic risks of damage. Annals of Forest Science 66(7): 1–18. DOI: 10.1051/forest/2009054CrossRefGoogle Scholar
  25. Jalkanen A, Mattila U (2000) Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. Forest Ecology and Management 135(1): 315–330. DOI: 10.1016/S0378-1127(00) 00289-9CrossRefGoogle Scholar
  26. Kamimura K, Shiraishi N (2007) A review of strategies for wind damage assessment in Japanese forests. Journal of Forest Research 12(3): 162–176. DOI: 10.1007/s10310-007-0005-0CrossRefGoogle Scholar
  27. Kane VR, North MP, Lutz JA, et al. (2013) Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park. Remote Sensing of Environment 151: 89–101. DOI: 10.1016/j.rse.2013. 07.041CrossRefGoogle Scholar
  28. Kornus W, Ruiz A (2003) Strip adjustment of LIDAR data. In 3-D reconstruction airborne laser scanner and InSAR data. Institute of Photogrammetry and Remote Sensing, GITC. Wageningen, The Netherlands. pp 47–50.Google Scholar
  29. Kupfer J, Myers A, McLane S, Melton G (2008) Patterns of forest damage in a Southern Mississippi landscape caused by Hurricane Katrina. Ecosystems 11(1): 45–60. DOI: 10.1007/ s10021-007-9106-zCrossRefGoogle Scholar
  30. Kwak DA, Chung J, Lee WK, et al. (2010) Evaluation for Damaged Degree of Vegetation by Forest Fire using Lidar and a Digital Aerial Photograph. Photogrammetric Engineering and Remote Sensing 76(3): 277–287. DOI: 0099-1112/ 10/7603-0277 3.00/0CrossRefGoogle Scholar
  31. Leitäo AB, Miller J, Ahern J, et al. (2006) Measuring landscapes: A planner’s handbook. Island Press, Washington DC, USA. pp 47–53.Google Scholar
  32. Lindemann JD, Baker WL (2001) Attributes of blowdown patches from a severe wind event in the Southern Rocky Mountains, USA. Landscape Ecology 16(4): 313–325. DOI: 10.1023/A:1011101624668CrossRefGoogle Scholar
  33. Lopez-Moreno JI, Goyette S, Beniston M (2008) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. International Journal of Climatology 28(11): 1535–1550. DOI: 10.1002/joc.1645CrossRefGoogle Scholar
  34. Mailly D, Kimmins J, Busing R (2000) Disturbance and succession in a coniferous forest of northwestern North America: simulations with DRYADES, a spatial gap model. Ecological Modelling 127(2): 183–205. DOI: 10.1016/S0304-3800(99)00208-2CrossRefGoogle Scholar
  35. Martln-Alcön S, Coll L, Aunös Ä (2012) A broad-scale analysis of the main factors determining the current structure and understory composition of Catalonian sub-alpine (Pinus uncinata Ram.) forests. Forestry 85(2): 225–236. DOI: 10.1093/forestry/cpr067CrossRefGoogle Scholar
  36. Martln-Alcön S, Gonzâlez-Olabarria JR, Coll L (2010) Wind and snow damage in the Pyrenees pine forests: effect of stand attributes and location. Silva Fennica 44(3): 399–410. DOI: 10.14214/sf.138Google Scholar
  37. Martln-Alcön S, Coll L (2008) Evaluation and characterization of damage caused by wind and snow action in black pine, red pine and fir forests in the Catalan Pyrenees (Avaluaciö i caracteritzaciö dels danys causats per l’acciö del vent i la neu en les masses de pi negre, pi roig i avet del pirineu català). CTFC-DMAH (ed.), Solsona, Spain. pp 12–26. (In Catalan)Google Scholar
  38. Mason W (2002) Are irregular stands more windfirm?. Forestry 75(4):347–355. DOI: 10.1093/forestry/75.4.347CrossRefGoogle Scholar
  39. Mayer P, Brang P, Dobbertin M, et al. (2005) Forest storm damage is more frequent on acidic soils. Annals of Forest Science 62(4): 303–311. DOI: 10.1051/forest:2005025CrossRefGoogle Scholar
  40. McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Portland (OR): USDA Forest Service, Pacific Northwest Research Station: General Technical Report 351. pp 21–51.Google Scholar
  41. Montealegre AL, Lamelas MT, Tanase MA, de la Riva J (2014) Forest Fire Severity Assessment Using ALS Data in a Mediterranean Environment. Remote Sensing of Environment 6(5): 4240–4265. DOI: 10.3390/ 6054240CrossRefGoogle Scholar
  42. Moore JR, Manley BR, Park D, Scarrott CJ (2013) Quantification of wind damage to New Zealand’s planted forests. Forestry 86(2): 173–183. DOI: 10.1093/forestry/ cps076CrossRefGoogle Scholar
  43. Mori AS, Lertzman KP (2011) Historic variability in firegenerated landscape heterogeneity of subalpine forests in the Canadian Rockies. Journal of Vegetation Science 22(1): 45–58. DOI: 10.1111/j.1654-1103.2010.01230.xCrossRefGoogle Scholar
  44. Muntân E, Garcia C, Oller P, et al. (2009) Reconstructing snow avalanches in the Southeastern Pyrenees. Natural Hazards and Earth System Sciences 9: 1599–1612. DOI: 10.5194/nhess-9-1599-2009CrossRefGoogle Scholar
  45. Negrön-Juârez R, Baker DB, Chambers JQ, et al. (2014) Multiscale sensitivity of Landsat and MODIS to forest disturbance associated with tropical cyclones. Remote Sensing of Environment 140(0): 679–689. DOI: 10.1016/j.rse.2013.09.028CrossRefGoogle Scholar
  46. O’Hara KL (1996) Dynamics and stocking-level relationships of multi-aged ponderosa pine stands. Forest Science 42(4): 1–33Google Scholar
  47. Oliver CD, Larson BC (1990) Forest stand dynamics. McGraw-Hill, New York, USA. p 467.Google Scholar
  48. Pearson AF (2010) Natural and logging disturbances in the temperate rain forests of the Central Coast, British Columbia. Canadian Journal of Forest Research 40(10): 1970–1984. DOI: 10.1139/X10-137CrossRefGoogle Scholar
  49. Pesonen A, Maltamo M, Eerikäinen K, Packalèn P (2008) Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. Forest Ecology and Management 255(8): 3288–3296. DOI: 10.1016/j.foreco.2008. 02.017CrossRefGoogle Scholar
  50. Puettmann KJ, Coates KD, Messier C (2009) A critique of silviculture: managing for complexity. Island Press, Washington DC, USA. pp 107–145.Google Scholar
  51. Puettmann KJ, Messier C, Coates KD (2013) Managing forests as complex adaptive systems. In: Messier C, Puettmann KJ, Coates KD (eds.), Managing forests as complex adaptive systems; building resilience to the challenge of global change EarthScan. Routledge, Abingdon, England. p 353.Google Scholar
  52. Quine C (2000) Estimation of mean wind climate and probability of strong winds for wind risk assessment. Forestry 73(3): 247–258. DOI: 10.1093/forestry/73.3.247CrossRefGoogle Scholar
  53. Rempel RS, Kaukinen D, Carr AP (2012) Patch analyst and patch grid. Ontario Ministry of Natural Resources. Centre for Northern Forest Ecosystem Research, Thunder Bay, Ontario. Available on: (Accessed on 21 July 2014)Google Scholar
  54. Reque J, Bravo F (2008) Identifying forest structure types using National Forest Inventory Data: the case of sessile oak forest in the Cantabrian range. Forest Systems 17(2): 105–113. DOI: 10.5424/srf/2008172-01027Google Scholar
  55. Rich RL, Frelich L, Reich PB, Bauer ME (2010) Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. Remote Sensing of Environment 114(2): 299–308. DOI: 10.1016/j.rse.2009.09.005CrossRefGoogle Scholar
  56. Ruel JC (2000) Factors influencing windthrow in balsam fir forests: from landscape studies to individual tree studies. Forest Ecology and Management 135(1): 169–178. DOI: 10.1016/S0378-1127(00)00308-XCrossRefGoogle Scholar
  57. Schelhaas MJ, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology 9(11): 1620–1633. DOI: 10.1046/j.1365-2486.2003.00684.xCrossRefGoogle Scholar
  58. Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology 17(9): 2842–2852. DOI: 10.1111/j.1365-2486. 2011.02452.xCrossRefGoogle Scholar
  59. St-Onge B, Vepakomma U (2004) Assessing forest gap dynamics and growth using multi-temporal laser scanner data. In: Thies M, Koch B, Spiecker H, Weinacker H, (eds.), Laserscanners for forest and landscape assessment. Proceedings of the ISPRS working group VIII/2, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XXXVI, Part 8/W2, University of Freiburg, Germany. pp 173–178.Google Scholar
  60. Stephens SL, Millar CI, Collins BM (2010) Operational approaches to managing forests of the future in Mediterranean regions within a context of changing climates. Environmental Research Letters 5(2): 1–9. DOI: 10.1088/ 1748-9326/5/2/024003Google Scholar
  61. Terrasolid (2012) Terrasolid -the standard for airbone and mobile LiDAR and image processing. Available on: http:// (Accessed on 2015-02-09)Google Scholar
  62. Vallecillo S, Brotons L, Thuiller W (2009) Dangers of predicting bird species distributions in response to land-cover changes: the role of dynamic processes. Ecological Applications 19(2): 538–549. DOI: 10.1890/08-0348.1CrossRefGoogle Scholar
  63. Vepakomma U, Kneeshaw D, St-Onge B (2010) Interactions of multiple disturbances in shaping boreal forest dynamics: a spatially explicit analysis using multi-temporal lidar data and high-resolution imagery. Journal of Ecology 98(3): 526–539. DOI: 10.1111/j.1365-2745.2010.01643.xCrossRefGoogle Scholar
  64. Vepakomma U, St-Onge B, Kneeshaw D (2011) Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data. Ecological Applications 21(1): 99–121. DOI: 10.1890/09-0896.1CrossRefGoogle Scholar
  65. von Gadow K (2000) Evaluating risk in forest planning models. Silva Fennica 34(2): 181–191. DOI: 10.14214/.639Google Scholar
  66. Wang W, Qu JJ, Hao X, et al. A (2010) Post-hurricane forest damage assessment using satellite remote sensing. Agricultural and Forest Meteorology 150(1): 122–132. DOI: 10.1016/j.agrformet.2009.09.009CrossRefGoogle Scholar
  67. Ward JH (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301): 236–244. DOI: 10.1080/01621459.1963.10500845CrossRefGoogle Scholar
  68. Zimble DA, Evans DL, Carlson GC, et al. (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment 87(2): 171–182. DOI: 10.1016/S0034-4257(03)00139-1CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ángela Blázquez-Casado
    • 1
    Email author
  • José R. González-Olabarria
    • 1
  • Santiago Martin-Alcón
    • 1
  • Ariadna Just
    • 2
  • Mariló Cabré
    • 2
  • Lluís Coll
    • 1
  1. 1.Forest Sciences Center of Catalonia (CTFC)SolsonaSpain
  2. 2.Institut Cartogràfic i Geològic de Catalunya (ICGC)Parc de MontjuïcBacelonaSpain

Personalised recommendations