Journal of Mountain Science

, Volume 13, Issue 2, pp 302–315 | Cite as

Trends in major and minor meteorological variables and their influence on reference evapotranspiration for mid Himalayan region at east Sikkim, India

  • Shweta Yadav
  • Proloy DebEmail author
  • Sonn Kumar
  • Vanita Pandey
  • Pankaj Kumar Pandey


Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performance of original and location specific calibrated Hargreaves equation (HARG) with the estimates of Food and Agricultural Organization (FAO) Penman Monteith (PM) method for higher altitudes in East Sikkim, India. The results show that the uncalibrated HARG model underestimates ET o by 0.35 mm day−1 whereas the results are significantly improved by regional calibration of the model. In addition, this paper also presents the variability in the trajectory associated with the climatic variables with the changing climate in the study site. Nonparametric Mann-Kendall (MK) test was used to investigate and understand the mean monthly trend of eight climatic parameters including reference evapotranspiration (ET o) for the period of 1985 – 2009. Trend of ET o was estimated for the calculations done by FAO PM equation. The outcomes of the trend analysis show significant increasing (p ≤ 0.05) trend represented by higher Z-values, through MK test, for net radiation (Rn), maximum temperature (T max) and minimum temperature (T min), especially in the first months of the year. Whereas, significant (0.01 ≥ p ≤ 0.05) decreasing trend in vapor pressure deficit (VPD) and precipitation (P) is observed throughout the year. Declining trend in sunshine duration, VPD and ET o is found in spring (March – May) and monsoon (June – November) season. The result displays significant (0.01≤ p ≤ 0.05) decreasing ET o trend between (June – December) except in July, exhibiting the positive relation with VPD followed by sunshine duration at the station. Overall, the study emphasizes the importance of trend analysis of ET o and other climatic variables for efficient planning and managing the agricultural practices, in identifying the changes in the meteorological parameters and to accurately assess the hydrologic water balance of the hilly regions.


Reference evapotranspiration (EToClimatic variables Trend analysis Mann-Kendall’s test Monthly variation East Sikkim hilly region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen RG, Pereira LS, Raes D, et al. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper no. 56. FAO, Rome, Italy.Google Scholar
  2. Allen RG, Pruit WO, Wright JL, et al. (2006) A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman-Monteith method. Agriculture Water Management 81: 1–22. DOI: 10.1016/j.agwat.2005.03.007CrossRefGoogle Scholar
  3. Bautista F, Bautista D, Delgado-Carranza C (2009) Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications.. Atmosfera 22(4): 331–34.Google Scholar
  4. Beniston M, Rebetez M, Giorgi F, et al. (1994). An analysis of regional climate change in Switzerland. Theoretical and Applied. Climatology 49: 135.–159. DOI: 10.1007/BF008 65530Google Scholar
  5. Berti A, Gianmarco T, Chiaudani A, et al. (2014) Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water. Management 140: 20–25. DOI: 10.1016/j.agwat.2014.03.015Google Scholar
  6. Bolch T (2006) Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary. Change 56: 1–12. DOI: 10.1016/j.gloplacha.2006.07.009Google Scholar
  7. Burn DH, Cunderlik JM, Pietroniro A (2004) Hydrological trends and variability in the Liard River Basin / Tendances Hydrologiques et Variabilité Dans Le Basin de La Rivière Liard. Hydrological Sciences. Journal 49(1): 53–67. DOI: 10.1623/hysj. Scholar
  8. Burn DH, Hesch NM (2007) Trends in evaporation for the Canadian Prairies. Journal of Hydrology 336(1-2): 61–73. DOI: 10.1016/j.jhydrol.2006.12.011CrossRefGoogle Scholar
  9. Casimiro WSL, Labat D, Ronchail J, et al. (2012) Trends in rainfall and temperture in the Peruvian Amazon-Andes basin over the last 40 years (1965-2007). Hydrological. Processes 27: 2944–2957. DOI: 10.1002/hyp.9418Google Scholar
  10. Chattopadhyay N, Hulme M (1997) Evaporation and Potential Evapotranspiration in India under Conditions of Recent and Future Climate Change. Agricultural and Forest. Meteorology 87: 55–73. DOI: 10.1016/S0168-1923(97)00006-3Google Scholar
  11. Chen Y, Zongxue Xu (2005) Plausible Impact of Global Climate Change on Water Resources in the Tarim River Basin. Science in China Series D: Earth. Sciences 48(1): 65–73. DOI: 10.1360/04yd0539Google Scholar
  12. Deb P, Debnath P, Pattannaik SK (2014) Physico-chemical properties and water holding capacity of cultivated soils along altitudinal gradient in south Sikkim, India. Indian Journal if Agricultural. Research 48(2): 120–126. DOI: 10.5958/j.0976-058X.48.2.020Google Scholar
  13. Deb P, Shrestha S, Babel MS (2015) Forecasting climate change impacts and evaluation of adaptation options for maize cropping in the hilly terrain of Himalayas: Sikkim, India. Theoretical and Applied. Climatology 121(3): 649–667. DOI: 10.1007/s00704-014-1262-4Google Scholar
  14. Debnath P, Deb P, Sen D, et al. (2012) Physico-chemical properties and its relationship with water holding capacity of cultivated soils along altitudinal gradient in Sikkim. International Journal of Agricuture, Environment and. Biotechnology 5(1): 99–10.Google Scholar
  15. Dinpashoh Y (2006) Study of reference crop evapotranspiration in I.R. of Iran. Agricultural Water Management 84(1-2): 123–129. DOI: 10.1016/j.agwat.2006.02.011CrossRefGoogle Scholar
  16. Droogers P, Allen RG (2002) Estimating reference evapotranspitration under inaccurate data conditions. Irrigation and Drainage. Systems 16: 33–45. DOI: 10.1023/ A:1015508322413Google Scholar
  17. Elnesr M, Alazba A, Abu-zreig M (2010) Analysis of evapotranspiration variability and trends in the Arabian Peninsula. American Journal of Envirnmental. Sciences 6(6): 535–547. DOI: 10.3844/ajessp.2010.535.547Google Scholar
  18. Fekete BM, Vřšmarty CJ, Roads JO, et al. (2004) Uncertainties in precipitation and their impacts on runoff estimates. Journal of. Climate 17: 294–304. DOI: 10.1175/ 1520-0442(2004)0170294:UIPATI2.0.CO;2CrossRefGoogle Scholar
  19. Gao G, Chen D, Xu C, et al. (2007) Trend of estimated actual evapotranspiration over China during 1960-2002. Journal of Geophysical Research: Atmospheres 112: D11, 16. DOI: 10.1029/2006JD008010Google Scholar
  20. Gautam AP, Webb EL, Shivakoti GP, et al. (2003) Land use dynamics and landscape change pattern in a mountain watershed in Nepal. Agriculture, Ecosystems and Environment 99(1-3): 83–96. DOI: 10.1016/S0167-8809(03)00148-8CrossRefGoogle Scholar
  21. Giese E, Moßig I (2004) Climate change in central Asia. Schriftenreihedes Center for International Development and Environmental Research, vol. 17. (In German)Google Scholar
  22. Gordon JE, Haynes VM, Hubbard A (2008) Recent glacier changes and climate trends on south Georgia. Global and Planetary Change 60(1-2): 72–84. DOI: 10.1016/j.gloplacha. 2006.07.037CrossRefGoogle Scholar
  23. Grundstein A (2008) Evaluation of climate change over the continental United States using a moisture index. Climatic Change 93(1-2): 103–115. DOI: 10.1007/s10584-008-9480-3CrossRefGoogle Scholar
  24. Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage. Engineering 129(1): 53–63. DOI: 10.1061/(ASCE)0733-9437(2003)129:1(53)CrossRefGoogle Scholar
  25. Hargreaves GL, Hargreaves GH, Riley JP (1985) Irrigation water requirements for Senegal River Basin. Journal of Irrigationa and Drainage. Engineering 111(3): 265–275. DOI: 10.1061/(ASCE)0733-9437(1985)111:3(265)Google Scholar
  26. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Applied Engineering in. Agriculture 1(2): 96–99. DOI: 10.13031/2013.26773Google Scholar
  27. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resources. Research 18(1): 107–121. DOI: 10.1029/WR018i001p00107Google Scholar
  28. Hongfeng Z, Zhiyun O, Hua Z, et al. (2009) Recent climate trends on the morthern slopes of the Tianshan Mountains, Xinjiang, China. Journal of Mountain. Science 6(3): 255–265. DOI: 10.1007/s11629-009-0236-yGoogle Scholar
  29. Huang Y, Dickson RE, Chameides WL (2006). Impact of aerosol indirect effect on surface temperature over east Asia. Proceeding of National Academy of Sciences of the United States of America 103(12): 4371–4376. DOI: 10.1073/pnas. 0504428103CrossRefGoogle Scholar
  30. Irmak S, Kabenge I, Skaggs KE, et al. (2012) Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-Yr period in the Platte River Basin, Central Nebraska–USA. Journal of Hydrology 420-421: 228–244. DOI: 10.1016/j.jydrol.2011.12.006CrossRefGoogle Scholar
  31. Itenfisu D, Elliott RL, Allen RG, et al. (2003) Comparison of reference evapotranspiration calculations as part of the ASCE standardization effort. Journal of Irrigation and Drainage. Engineering 129(6): 440–448. DOI: 10.1061/(ASCE)0733-9437(2003)129:6(440)Google Scholar
  32. Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in northeast India. International Journal of. Climatology 33(4): 968–978. DOI: 10.1002/joc.3483CrossRefGoogle Scholar
  33. Jhajharia D, Shrivastava SK, Sarkar D, et al. (2009) Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agricultural and Forest. Meteorology 149(5): 763–770. DOI: 10.1016/j.agrformet.2008. 10.024Google Scholar
  34. Jung M, Reichstein M, Ciais P, et al. (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply.. Nature 467(7318): 951–954. DOI: 10.1038/nature09396CrossRefGoogle Scholar
  35. Kashyap PS, Panda RK (2001) Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agricultural Water. Management 50: 9–25. DOI: 10.1016/S0378-3774(01)00102-0Google Scholar
  36. Kendall MG (1975) Rank Correlation Methods. 4th ed. Charles Griffin & Company, London, UK.Google Scholar
  37. Khattak MS, Babel MS, Sharif M (2011) Hydro-meteorological trends in the upper Indus River Basin in Pakistan. Climate. Research 46(2): 103–119. DOI: 10.3354.cr00957Google Scholar
  38. Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records — A review of the Methodology. Hydrological Sciences. Journal 49(1): 7–20. DOI: 10.1623/ hysj. Scholar
  39. Lal R (2006) Encyclopedia of Soil Science. Available online at: c=frontcover#v=onepage&q&f=false (Accessed on 20 July 2014)Google Scholar
  40. Mann HB (1945) Nonparametric tests against trend.. Econometrica 13: 245–259.CrossRefGoogle Scholar
  41. Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan Mountains, central Asia. Global and Planetary Change 56(3-4): 311–327. DOI: 10.1016/j. gloplacha.2006.07.023CrossRefGoogle Scholar
  42. Martinez CJ, Thepadia M (2010) Estimating reference evapotranspiration with minimum data in Florida. Journal of Irrigation and Drainage. Engineering 136(7): 494–501. DOI: 10.1061/(ASCE)/IR.1943-4774.0000214Google Scholar
  43. Moonen AC, Ercoli L, Mariotti M, et al. (2002) Climate change in Italy indicated by agrometeorological indices over 122 Years. Agricultural and Forest. Meteorology 111(1): 13–27. DOI: 10.1016/S0168-1923(02)00012-6Google Scholar
  44. Murugappan A, Sivaprakasam S, Mohan S (2011) Performance evaluation of calibrated Hargreaves method for estimation of Ref-ET in a hot and humid coastal location in India. International Journal of Engineering Science and. Technology 3(6): 4728–4743.Google Scholar
  45. Pandey V, Pandey PK, Mahanta AP (2014) Calibration and performance verification of Hargreaves Samani equation in a humid region. Irrigation and. Drainage 63(5): 659–667. DOI: 10.1002/ird.1874CrossRefGoogle Scholar
  46. Pasquini AI, Lecomte KL, Piovano EL, et al. (2006) Recent rainfall and runoff variability in central Argentina. Quaternary. International 158(1): 127–139. DOI: 10.1016/j. quaint.2006.05.021CrossRefGoogle Scholar
  47. Popova Z, Kercheva M, Pereira LS (2006) Validation of the FAO methodology for computing ET0 with limited data, application to South Bulgaria. Irrigation and Drainage. Engineering 55: 201–215. DOI: 10.1002.ird.228Google Scholar
  48. Rathore LS, Attri SD, Jaswal AK (2013) State level climate change trends in India. By India Meteorological Department, Ministry of Earth Sciences. Monograph no. ESSO/IMD/EMRC/02/2013.Google Scholar
  49. Rahman H, Karuppaiyan R, Senapati PC, et al. (2012) An analysis of past three decade weather phenomenon in the mid-hills of Sikkim and strategies for mitigating possible impact of climate change on agriculture. In: Arrawatia ML et al. (eds.), Climate Change in Sikkim: Patterns, Impacts and Initiatives. Information and Public Relations Department, Government of Sikkim. Gangtok, India. pp 19–48.Google Scholar
  50. Raziei T, Pereira LS (2013) Estimation of ET0 with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climate in Iran. Agricultural Water. Management 121: 1–18. DOI: 10.1016/j.agwat.2012.12.019Google Scholar
  51. Schwartz P, Randall D (2003) An Abrupt Climate Change Scenario and Its Implications for United States National Security. In Diane Publishing, USA: Diane Publishing Co., 22. Available online at: pdf (Accessed on 25 July 2014)Google Scholar
  52. Seetharam K (2008) Climate change scenario over Gangtok. Letter to the Editor. Meteorological Center, Gangtok. Indian Meteorological Department, India.. Mausam 59(1): 361–366.Google Scholar
  53. Shuttleworth WJ (1993) Evaporation. In: Maidment DR (ed.), Handbook of Hydrology. McGraw-Hill Inc., New York, NY, USA. pp 4.1–4.53.Google Scholar
  54. Smith M (2000) The application of climatic data for planning and management of sustainable rainfed and irrigated crop production. Agricultural and Forest Meteorology 103(1-2): 99–108. DOI: 10.1016/S0168-1923(00)00121-0CrossRefGoogle Scholar
  55. Stanhill G (1998) Long-term trends in and spatial variation of solar irradiance in Ireland. International Journal of. Climatology 18: 1015–1030. DOI: 10.1002/(SICI)1097-0088(199807)18:91015::AID-JOC2973.0.CO;2-2CrossRefGoogle Scholar
  56. Stocker TF, Qin D, Plattner G-K, et al. (2013). IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA.Google Scholar
  57. Temesgen B, Eching S, Davidoff B, et al. (2005) Comparison of some reference evapotranspiration equations for California. Journal of Irrigation And Drainage. Engineering 131(1): 73–84. DOI: 10.1061/(ASCE)0733-9437(2005)131:1(73).Google Scholar
  58. Todorovic M, Karic B, Pereira LS (2013) Reference evapotranspiration estimate with limited weather data across a range of Mediterranean Climates. Journal of. Hydrology 481: 166–176. DOI: 10.1016/j.hydrol.2012.12.034CrossRefGoogle Scholar
  59. Trajkovic S (2007) Hargreaves versus Penman-Monteith under humid conditions. Journal of Irrigation and Drainage. Engineering 133(1): 38–42. DOI: 10.1061/(ASCE)0733-9437 (2007)133:1(38)Google Scholar
  60. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s Global Energy Budget. Bulletin of the American Meteorological. Society 90(3): 311.323. DOI: 10.1175/2008BAMS2634.1 (Accessed on 11 July 2014)Google Scholar
  61. Wales-Smith BG (1980) Estimates of net radiation for evaporation calculations. Hydrological Sciences-Bulletin-des Sciences. Hydrologiques 25(3): 237–242. DOI: 10.1080/ 02626668009491931Google Scholar
  62. Willmott CJ, Ackleson SG, Davis RE, et al. (1985) Statistics for the evaluation of model performance. Journal of Geophysical Research: Oceans 90(C5): 8995–9005. DOI: 10.1029/C0901C05p08995CrossRefGoogle Scholar
  63. Yoder RE, Odhiambo LO, Wright WC (2005) Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the hunid southeast United States. Applied Engineering in. Agriculture 21(2): 197–202. DOI: 10.13031/2013.18154Google Scholar
  64. Yu YS, Zou S, Whittemore D (1993) Non parametric trend analysis of water quality data of rivers in Kansan. Journal of. Hydrology 150(1): 61–80. DOI: 10.1016/0022-1694(93)90156-4CrossRefGoogle Scholar
  65. Yue S, Hashino M (2003) Temperature trends in Japan: 1900–1996. Theoretical and Applied. Climatology 27: 15–27. DOI: 10.1007/s00704-002-0717-1Google Scholar
  66. Zhang Y, Liu C, Tang Y, et al. (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research 112: D12110. DOI: 10.1029/2006JD008161CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shweta Yadav
    • 1
  • Proloy Deb
    • 2
    Email author
  • Sonn Kumar
    • 3
  • Vanita Pandey
    • 4
  • Pankaj Kumar Pandey
    • 3
  1. 1.Water Engineering and ManagementAsian Institute of TechnologyPathumthaniThailand
  2. 2.Centre for Water, Climate and Land-Use (CWCL), Faculty of Science and Information Technology, School of Environmental and Life SciencesUniversity of NewcastleCallaghanAustralia
  3. 3.Department of Agricultural EngineeringNortheastern Regional Institute of Science and TechnologyNirjuliIndia
  4. 4.Department of Soil and Water EngineeringCollege of Agricultural Engineering and Post Harvest TechnologyRanipoolIndia

Personalised recommendations