Advertisement

Journal of Mountain Science

, Volume 13, Issue 2, pp 265–275 | Cite as

Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau, China

  • Nan Zhou
  • Jian-shuang WuEmail author
  • Zhen-xi Shen
  • Xian-zhou Zhang
  • Peng-wan Yang
Article

Abstract

The species-area relationship (SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation. However, few studies have systematically addressed this topic for different alpine grassland types on the Tibetan Plateau, China. We explored whether the plant composition of different functional groups affects the manner in which species richness increases with increasing area at scales ≤ 1.0 m2. We also compared species richness (S) within and across forbs, legumes, sedges and grasses, with sampling subplot area (A) increasing from 0.0625 m2 to 1.0 m2 between alpine meadow and steppe communities. We applied a logarithmic function (S = b 0 + b 1 ln A) to determine the slope and intercept of SAR curves within and across functional groups. The results showed that the logarithmic relationship holds true between species richness and sampling area at these small scales. Both the intercept and slope of the logarithmic forbs-area curves are significantly higher than those for the three other functional groups (P < 0.05). Forb accounts for about 91.9 % of the variation in the intercept and 75.0% of the variation in the slope of the SAR curve when all functional groups’ data were pooled together. Our results indicated that the different SAR patterns should be linked with species dispersal capabilities, environmental filtering, and life form composition within alpine grassland communities. Further studies on the relationship between species diversity and ecosystem functions should specify the differential responses of different functional groups to variations in climate and anthropogenic disturbances.

Keywords

Changtang Nature Reserve Complementary response Plant functional groups Plant life forms Species coexistence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11629_2014_3166_MOESM1_ESM.pdf (85 kb)
Supplementary material, approximately 85.0 KB.

References

  1. Arrhenius O (1921) Species and area. Journal of. Ecology 9: 95–99.CrossRefGoogle Scholar
  2. Auerbach M, Shmida A (1987) Spatial scale and the determinants of plant species richness. Trends in Ecology and. Evolution 2: 238–242. DOI: 10.1016/0169-5347(87)90005-XGoogle Scholar
  3. Barnett DT, Stohlgren TJ (2003) A nested-intensity design for surveying plant diversity. Biodiversity and Conservation 12: 255–278. DOI: 10.1023/A:1021939010065CrossRefGoogle Scholar
  4. Bell G (2001) Ecology -Neutral macroecology.. Science 293: 2413–2418. DOI: 10.1126/science.293.5539.2413CrossRefGoogle Scholar
  5. Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology. Letters 16: 1234–1244. DOI: 10.1111/ele.12161Google Scholar
  6. Cao J, Holden NM, Lu XT, et al. (2011) The effect of grazing management on plant species richness on the Qinghai-Tibetan Plateau. Grass and Forage. Science 66: 333–336. DOI: 10.1111/j.1365-2494.2011.00793.xGoogle Scholar
  7. Cao JJ, Yeh ET, Holden NM, et al. (2013) The effects of enclosures and land-use contracts on rangeland degradation on the Qinghai-Tibetan plateau. Journal of Arid. Environments 97: 3–8. DOI: 10.1016/j.jaridenv.2013.05.002CrossRefGoogle Scholar
  8. Carey S, Harte J, Moral R del (2006) Effect of community assembly and primary succession on the species-area relationship in disturbed ecosystems.. Ecography 29: 866–872. DOI: 10.1111/j.2006.0906-7590.04712.xCrossRefGoogle Scholar
  9. Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B-Biological. Sciences 366: 2351–2363. DOI: 10.1098/rstb.2011.0063Google Scholar
  10. Chen J, Yamamura Y, Hori Y, et al. (2008) Small-scale species richness and its spatial variation in an alpine meadow on the Qinghai-Tibet Plateau. Ecological. Research 23: 657–663. DOI: 10.1007/s11284-007-0423-7Google Scholar
  11. Chiarucci A, Viciani D, Winter C, et al. (2006) Effects of productivity on species-area curves in herbaceous vegetation: evidence from experimental and observational data.. Oikos 115: 475–483. DOI: 10.1111/j.2006.0030-1299.15116.xCrossRefGoogle Scholar
  12. de Bello F, Lepš J, Sebastià MT (2007) Grazing effects on the species-area relationship: Variation along a climatic gradient in NE Spain. Journal of Vegetation. Science 18: 25–34. DOI: 10.1111/j.1654-1103.2007.tb02512.xGoogle Scholar
  13. Dengler J, Oldeland J (2010) Effects of sampling protocol on the shapes of species richness curves. Journal of. Biogeography 37: 1698–1705. DOI: 10.1111/j.1365-2699.2010.02322.xCrossRefGoogle Scholar
  14. Desilets P, Houle G (2005) Effects of resource availability and heterogeneity on the slope of the species-area curve along a floodplain-upland gradient. Journal of Vegetation. Science 16: 487–496. DOI: 10.1111/j.1654-1103.2005.tb02389.xGoogle Scholar
  15. Gerstner K, Dormann CF, Vaclavik T, et al. (2014) Accounting for geographical variation in species-area relationships improves the prediction of plant species richness at the global scale. Journal of. Biogeography 41: 261–273. DOI: 10.1111/ Jbi.12213CrossRefGoogle Scholar
  16. Gleason HA (1922) On the relation between species and area.. Ecology 3: 158–162. DOI: 10.2307/1929150CrossRefGoogle Scholar
  17. Gleason HA (1925) Species and area.. Ecology 6: 66–74. DOI: 10.2307/1929241CrossRefGoogle Scholar
  18. Gray JS, Ugland KI, Lambshead J (2004) On species accumulation and species–area curves. Global Ecology and. Biogeography 13: 567–568. DOI: 10.1111/j.1466-822X.2004. 00138.xCrossRefGoogle Scholar
  19. He FL, Hubbell SP (2011) Species-area relationships always overestimate extinction rates from habitat loss.. Nature 473: 368–371. DOI: 10.1038/Nature09985CrossRefGoogle Scholar
  20. Hedberg P, Kozub L, Kotowski W (2014) Functional diversity analysis helps to identify filters affecting community assembly after fen restoration by top-soil removal and hay transfer. Journal for Nature. Conservation 22: 50–58. DOI: 10.1016/ j.jnc.2013.08.004Google Scholar
  21. Hiernaux P (1998) Effects of grazing on plant species composition and spatial distribution in rangelands of the Sahel. Plant. Ecology 138: 191–202. DOI: 10.1023/ A:1009752606688Google Scholar
  22. Houle G (1990) Species-area relationship during primary succession in granite outcrop plant-communities. American Journal of. Botany 77: 1433–1439. DOI: 10.2307/2444753CrossRefGoogle Scholar
  23. Hu ZM, Yu GR, Fan JW, et al. (2010) Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and. Biogeography 19: 842–851. DOI: 10.1111/j.1466-8238. 2010.00564.xGoogle Scholar
  24. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological. Monographs 54: 187–211. DOI: 10.2307/1942661CrossRefGoogle Scholar
  25. Keeley JE, Fotheringham C (2009) Plot shape effects on plant species diversity measurements. Journal of Vegetation. Science 16: 249–256. DOI: 10.1111/j.1654-1103.2005. tb02362.xGoogle Scholar
  26. Klimeš L (1999) Small-scale plant mobility in a species-rich grassland. Journal of Vegetation. Science 10: 209–218. DOI: 10.2307/3237142Google Scholar
  27. Lawton JH (1999) Are there general laws in ecology?. Oikos 84: 177–192.CrossRefGoogle Scholar
  28. Lazarina M, Kallimanis AS, Sgardelis SP (2013) Does the universality of the species–area relationship apply to smaller scales and across taxonomic groups?. Ecography 36: 965–970. DOI: 10.1111/j.1600-0587.2013.00149.xCrossRefGoogle Scholar
  29. Leps J, Stursa J (1989) Species-area curve, life-history strategies, and succession -a field-test of relationships.. Vegetatio 83: 249–257. DOI: 10.1007/Bf00031697CrossRefGoogle Scholar
  30. Li XJ, Zhang XZ, Wu JS, et al. (2011) Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth. Sciences 64: 1911–1919. DOI: 10.1007/s12665-011-1004-1Google Scholar
  31. Lomolino MV (2000) Ecology's most general, yet protean pattern: the species-area relationship. Journal of. Biogeography 27: 17–26. DOI: 10.1046/j.1365-2699.2000. 00377.xCrossRefGoogle Scholar
  32. Lortie CJ, Brooker RW, Choler P, et al. (2004) Rethinking plant community theory.. Oikos 107: 433–438. DOI: 10.1111/j.0030-1299.2004.13250.xCrossRefGoogle Scholar
  33. Ma WL, Shi PL, Li WH, et al. (2010a) Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China Life. Sciences 53: 1142–1151. DOI: 10.1007/s11427-010-4054-9Google Scholar
  34. Ma WH, He JS, Yang YH, et al. (2010b) Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and. Biogeography 19: 233–243. DOI: 10.1111/j.1466-8238.2009.00508.xCrossRefGoogle Scholar
  35. Morgan JW, Wong NK, Cutler SC (2011) Life-form species-area relationships in a temperate eucalypt woodland community. Plant. Ecology 212: 1047–1055. DOI: 10.1007/s11258-010-9885-8Google Scholar
  36. Olsen SL, Klanderud K. (2014) Biotic interactions limit species richness in an alpine plant community, especially under experimental warming.. Oikos 123: 71–78. DOI: 10.1111/j.1600-0706.2013.00336.xCrossRefGoogle Scholar
  37. Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the ecuadorian páramos. Plant. Ecology 131: 173–192. DOI: 10.1023/a:1009796224479Google Scholar
  38. Rejmének M, Rosén E. (1992) Influence of colonizing shrubs on species-area relationships in alvar plant communities. Journal of Vegetation. Science 3: 625–630. DOI: 10.2307/ 3235829Google Scholar
  39. Schöb C, Michalet R, Cavieres LA, et al. (2014) A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist 202: 95–105. DOI: 10.1111/nph.12641CrossRefGoogle Scholar
  40. Scheiner SM (2003) Six types of species-area curves. Global Ecology and. Biogeography 12: 441–447. DOI: 10.1046/j.1466-822X.2003.00061.xCrossRefGoogle Scholar
  41. Scheiner SM (2004) A melange of curves -further dialogue about species-area relationships. Global Ecology and Biogeography 13: 479–484. DOI: 10.1111/j.1466-822X.2004. 00127.xCrossRefGoogle Scholar
  42. Scheiner SM (2009) The terminology and use of species-area relationships: a response to Dengler (2009). Journal of. Biogeography 36: 2005–2008. DOI: 10.1111/j.1365-2699.2009. 02164.xCrossRefGoogle Scholar
  43. Shen GC, Yu MJ, Hu XS, et al. (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity.. Ecology 90: 3033–3041. DOI: 10.1890/ 08-1646.1CrossRefGoogle Scholar
  44. Shi Y, Wang Y, Ma Y, et al. (2014) Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands.. Biogeosciences 11: 2003–2016. DOI: 10.5194/bg-11-2003-2014CrossRefGoogle Scholar
  45. Shmida A, Wilson MV (1985) Biological determinants of species-diversity. Journal of. Biogeography 12: 1–20. DOI: 10. 2307/2845026CrossRefGoogle Scholar
  46. Singh JS, Bourgeron P, Lauenroth WK (1996) Plant species richness and species-area relations in a shortgrass steppe in Colorado. Journal of Vegetation. Science 7: 645–650. DOI: 10.2307/3236376Google Scholar
  47. Stegen JC, Swenson NG (2009) Functional trait assembly through ecological and evolutionary time. Theoretical. Ecology 2: 239–250. DOI: 10.1007/s12080-009-0047-3Google Scholar
  48. Stohlgren TJ, Falkner MB, Schell LD (1995) A Modified-Whittaker Nested Vegetation Sampling Method. Vegetatio 117: 113–121. DOI: 10.1007/Bf00045503CrossRefGoogle Scholar
  49. Texeira M, Altesor A (2009) Small-scale spatial dynamics of vegetation in a grazed Uruguayan grassland. Austral. Ecology 34: 386–394. DOI: 10.1111/j.1442-9993.2009.01940.xGoogle Scholar
  50. Tjorve E (2003) Shapes and functions of species-area curves: a review of possible models. Journal of. Biogeography 30: 827–835. DOI: 10.1046/j.1365-2699.2003.00877.xCrossRefGoogle Scholar
  51. Tjorve E (2009) Shapes and functions of species-area curves (II): a review of new models and parameterizations. Journal of. Biogeography 36: 1435–1445. DOI: 10.1111/j.1365-2699.2009. 02101.xCrossRefGoogle Scholar
  52. Tjorve E, Tjorve KM (2008) The species-area relationship, selfsimilarity, and the true meaning of the z-value.. Ecology 89: 3528–3533. DOI: 10.1890/07-1685.1CrossRefGoogle Scholar
  53. Turner WR, Tjorve E (2005) Scale-dependence in species-area relationships.. Ecography 28: 721–730. DOI: 10.1111/j.2005. 0906-7590.04273.xCrossRefGoogle Scholar
  54. Ulrich W, Buszko J (2007) Sampling design and the shape of species-area curves on the regional scale. Acta Oecologica-International Journal of. Ecology 31: 54–59. DOI: 10.1016/ j.actao.2006.03.005Google Scholar
  55. Wang Z, Luo TX, Li RC, et al. (2013) Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. Journal of Vegetation. Science 24: 189–201. DOI: 10.1111/ j.1654-1103.2012.01442.xGoogle Scholar
  56. Whittaker RJ, Matthews TJ, Fernández-Palacios JM (2014) The varied form of species-area relationships. Journal of. Biogeography 41: 209–210. DOI: 10.1111/jbi.12256CrossRefGoogle Scholar
  57. Whittaker RJ, Triantis KA (2012) The species-area relationship: an exploration of that 'most general, yet protean pattern'. Journal of. Biogeography 39: 623–626. DOI: 10.1111/j.1365-2699.2012.02692.xCrossRefGoogle Scholar
  58. Wu GL, Shang ZH, Zhu YJ, et al. (2014a) Species abundanceseed size patterns within a plant community affected by grazing disturbance. Ecological Applications. DOI: 10.1890/14-0135.1Google Scholar
  59. Wu JS, Shen ZX, Zhang XZ (2014b) Precipitation and species composition primarily determine the diversity–productivity relationship of alpine grasslands on the Northern Tibetan Plateau. Alpine. Botany 124: 13–25. DOI: 10.1007/s00035-014-0125-zGoogle Scholar
  60. Wu JS, Shen ZX, Shi PL, et al. (2014c) Effects of grazing exclusion on plant functional group diversity alpine grasslands along a precipitation gradient on the Northern Tibetan Plateau. Arctic Antarctic and Alpine. Research 46: 419–429. DOI: 10.1657/1938-4246-46.2.419Google Scholar
  61. Wu JS, Shen ZX, Zhang XZ, et al. (2013a) Biomass allocation patterns of alpine grassland species and functional groups along a precipitation gradient on the Northern Tibetan Plateau. Journal of Mountain. Science 10: 1097–1108. DOI 10.1007/s11629-013-2435-9Google Scholar
  62. Wu JS, Zhang XZ, Shen ZX, et al. (2013b) Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the Northern Tibetan Plateau. Rangeland Ecology & Management 66: DOI: 454–461. Doi 10.2111/Rem-D-12-00051.1CrossRefGoogle Scholar
  63. Wu JS, Zhang XZ, Shen ZX, et al. (2014d) Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the Northern Tibetan Plateau. Chinese Science. Bulletin 59: 4332–4340. DOI: 10.1007/s11434-014-0362-yGoogle Scholar
  64. Wu JS, Zhang XZ, Shen ZX, et al. (2012) Species richness and diversity of alpine grasslands on the Northern Tibetan Plateau: effects of grazing exclusion and growing season precipitation. Journal of Resources and. Ecology 3: 236–242. DOI: 10.5814/ j.issn.1674-764x.2012.03.006Google Scholar
  65. Yan YJ, Yang X, Tang Z (2013) Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecology and. Evolution 3: 4584–4595. DOI: 10.1002/ece3.847Google Scholar
  66. Yang YH, Fang JY, Fay PA, et al. (2010) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters 37: L15702. DOI: 10.1029/2010gl043920Google Scholar
  67. Yang YH, Fang JY, Pan YD, et al. (2009) Aboveground biomass in Tibetan grasslands. Journal of Arid. Environments 73: 91–95. DOI: 10.1016/j.jaridenv.2008.09.027CrossRefGoogle Scholar
  68. Yu FH, Krusi B, Schutz M, et al. (2008) Plant communities affect the species-area relationship on Carex sempervirens tussocks.. Flora 203: 197–203. DOI: 10.1016/j.flora.2007. 03.002CrossRefGoogle Scholar
  69. Zhou XM (2001) Chinese Kobresia Meadow. Science Press, Beijing, China. pp 155–160. (In Chinese)Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nan Zhou
    • 1
    • 2
  • Jian-shuang Wu
    • 1
    • 3
    Email author
  • Zhen-xi Shen
    • 1
  • Xian-zhou Zhang
    • 1
  • Peng-wan Yang
    • 1
    • 2
  1. 1.Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of sciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Functional Biodiversity, Dahlem Centre of Plant SciencesFree University of BerlinBerlinGermany

Personalised recommendations