Advertisement

Journal of Mountain Science

, Volume 12, Issue 2, pp 313–329 | Cite as

Regimes of runoff components on the debris-covered Koxkar glacier in western China

  • Hai-dong HanEmail author
  • Yong-jian Ding
  • Shi-yin Liu
  • Jian Wang
Article

Abstract

By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007–2011 are simulated, and variations and characteristics of major hydrological components are discussed. The results show that the meltwater runoff contributes 67.4%, of the proglacial discharge, out of which snowmelt, clean ice melting, buried-ice ablation and ice-cliff backwasting account for 22.4%, 21.9%, 17.9% and 5.3% of the total melt runoff, respectively. Rainfall runoff is significant in mid-latitude glacierized mountain areas like Tianshan and Karakorum. In the Koxkar glacier catchment, about 11.5% of stream water is initiated from liquid precipitation. Spatial distributions for each glacial runoff component reveal the importance of climatic gradients, local topography and morphology on glacial runoff generation, and temporal variations of these components is closely related to the annual cycle of catchment meteorology and glacier storage. Four stages are recognized in the seasonal variations of glacier storage, reflecting changes in meltwater yields, meteorological conditions and drainage systems in the annual hydrological cycle.

Keywords

Debris cover Meltwater Glacier Koxkar Runoff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizen VB, Aizen EM, Kuzmichonok VA (2007a) Glaciers and hydrological changes in the Tien Shan: simulation and prediction. Environmental Research Letters 2(4): Artn 045019. DOI: 10.1088/1748-9326/2/4/045019Google Scholar
  2. Aizen VB, Aizen EM, Melack JM, et al. (1997) Climatic and hydrologic changes in the Tien Shan, Central Asia. Journal of Climate 10(6): 1393–1404. DOI: 10.1175/1520-0442(1997)010〈1393:cahcit〉2.0.co;2.CrossRefGoogle Scholar
  3. Aizen VB, Kuzmichenok VA, Surazakov AB, et al. (2007b) Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Global and Planetary Change 56(3–4): 328–340. DOI: 10.1016/j.gloplacha.2006.07.016CrossRefGoogle Scholar
  4. Bagla P (2009) Climate change. No sign yet of Himalayan meltdown, Indian report finds. Science 326(5955): 924–5. DOI: 10.1126/science.326.5955.924CrossRefGoogle Scholar
  5. Benn DI, Evans DJA (1998) Glaciers and glaciation. New York: John Wiley & Sons, Inc. p 734.Google Scholar
  6. Benn DI, Lehmkuhl F (2000) Mass balance and equilibriumline altitudes of glaciers in high-mountain environments. Quaternary International 65-6: 15–29. DOI:10.1016/S1040-6182(99)00034-8CrossRefGoogle Scholar
  7. Bolch T, Marchenko S (2006) Significance of glaciers, rockglaciers and ice-rich permafrost in the Northern Tien Shan as water towers under climate change conditions, Assessment of Snow-Glacier and Water Resources in Asia. IHP/HWRP, Almaty, Kazakstan, pp. 132–144.Google Scholar
  8. Brand G, Pohjola V, Hooke RL (1987) Evidence for a till layer beneath Storglaciären, Sweden, based on electrical-resistivity measurements. Journal of Glaciology 33(115): 311–314.Google Scholar
  9. Brock BW, Mihalcea C, Kirkbride MP, et al. (2010) Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps. Journal of Geophysical Research 115(D9): D09106. DOI: 10.1029/2009jd013224CrossRefGoogle Scholar
  10. Cogley JG, Kargel JS, Kaser G, et al. (2010) Tracking the source of glacier misinformation. Science 327(5965): 522. DOI: 10.1126/science.327.5965.522-aCrossRefGoogle Scholar
  11. Collier E, Molg T, Maussion F, et al. (2013) High-resolution interactive modelling of the mountain glacier-atmosphere interface: an application over the Karakoram. Cryosphere 7(3): 779–795. DOI: 10.5194/tc-7-779-2013CrossRefGoogle Scholar
  12. Duan K, Yao T, Wang N, et al. (2012) Numerical simulation of Urumqi Glacier No. 1 in the eastern Tianshan, central Asia from 2005 to 2070. Chinese Science Bulletin 57(34): 4505–4509. DOI: 10.1007/s11434-012-5469-4CrossRefGoogle Scholar
  13. Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Lanham, Maryland: Rowman & Littlefield Publishers, Inc. p 589.Google Scholar
  14. Hagg W, Braun LN, Kuhn M, et al. (2007) Modelling of hydrological response to climate change in glacierized Central Asian catchments. Journal of Hydrology 332(1–2): 40–53. DOI: 10.1016/j.jhydrol.2006.06.021CrossRefGoogle Scholar
  15. Han H, Ding Y, Liu S (2006a) A simple model to estimate ice ablation under a thick debris layer. Journal of Glaciology 52(179): 528–536. DOI: 10.3189/172756506781828395.CrossRefGoogle Scholar
  16. Han H, Ding Y, Liu S, et al. (2014) Modeling runoff of a large glacier in western China. Journal of Mountain Science (Submitted).Google Scholar
  17. Han H, Liu S, Ding Y, et al. (2006b) Investigation of ice cliffs in the debris-covered area of Koxkar glacier, Tianshan. Journal of Glaciology and Geocryology 28(6): 879–884. (In Chinese)Google Scholar
  18. Han H, Liu S, Wang J, et al. (2010a) Glacial runoff characteristics of the Koxkar Glacier, Tuomuer-Khan Tengri Mountain Ranges, China. Environmental Earth Sciences 61(4): 665–674. DOI: 10.1007/s12665-009-0378-9CrossRefGoogle Scholar
  19. Han H, Wang J, Wei J, et al. (2010b) Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. Journal of Glaciology 56(196): 287–296. DOI: 10.3189/002214310791968430CrossRefGoogle Scholar
  20. Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience 6(9): 742–745. DOI: 10.1038/Ngeo1896CrossRefGoogle Scholar
  21. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate Change Will Affect the Asian Water Towers. Science 328(5984): 1382–1385. DOI: 10.1126/science.1183188CrossRefGoogle Scholar
  22. Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. Journal of Hydrology 282(1–4): 116–129. DOI: 10.1016/s0022-1694(03)00258-0CrossRefGoogle Scholar
  23. Jeelani G, Feddema JJ, van der Veen CJ, et al. (2012) Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resources Research 48: Artn W12508. DOI: 10.1029/2011wr011590Google Scholar
  24. Kutuzov S, Shahgedanova M (2009) Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Global and Planetary Change 69(1–2): 59–70. DOI: 10.1016/j.gloplacha.2009.07.001CrossRefGoogle Scholar
  25. Mihalcea C, Mayer C, Diolaiuti G, et al. (2006) Ice ablation and meteorolopical conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology 43: 292–300. DOI: 10.3189/172756406781812104CrossRefGoogle Scholar
  26. Miller JD, Immerzeel WW, Rees G (2012) Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu Kush-Himalayas A Synthesis of the Scientific Basis. Mountain Research and Development 32(4): 461–467. DOI: 10.1659/Mrd-Journal-D-12-00027.1CrossRefGoogle Scholar
  27. Nakawo M, Rana B (1999) Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geografiska Annaler Series A-Physical Geography 81A(4): 695–701. DOI: 10.1111/1468-0459.00097CrossRefGoogle Scholar
  28. Nakawo M, Takahashi S (1982) A Simplified Model for Estimating Glacier Ablation under a Debris Layer. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 27(2): 259–259.Google Scholar
  29. Narama C, Kaab A, Duishonakunov M, et al. (2010) Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (similar to 1970), Landsat (similar to 2000), and ALOS (similar to 2007) satellite data. Global and Planetary Change 71(1–2): 42–54. DOI: 10.1016/j.gloplacha.2009.08.002CrossRefGoogle Scholar
  30. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I — a discussion of principle. Journal of Hydrology 10: 282–290. DOI: 10.1016/0022-1694(70)90255-6CrossRefGoogle Scholar
  31. Pandey P, Venkataraman G (2013) Changes in the glaciers of ChandraBhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. International Journal of Remote Sensing 34(15): 5584–5597. DOI: 10.1080/01431161.2013.793464CrossRefGoogle Scholar
  32. Pfeffer WT, Arendt AA, Bliss A, et al. (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60(221): 537–552. DOI: 10.3189/2014JoG13J176CrossRefGoogle Scholar
  33. Prasch M, Mauser W, Weber M (2013) Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. Cryosphere 7(3): 889–904. DOI: 10.5194/tc-7-889-2013CrossRefGoogle Scholar
  34. Sakai A, Nakawo M, Fujita K (1998) Melt rate of ice cliffs on the Lirung Glacier, Nepal Himalayas, 1996. Bulletin Glaciology Resources 16: 57–66.Google Scholar
  35. Sakai A, Nakawo M, Fujita K (2002) Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arctic Antarctic and Alpine Research 34(1): 12–19.CrossRefGoogle Scholar
  36. Shangguan D, Liu SY, Ding YJ, et al. (2009) Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Progress in Natural Science 19(6): 727–732. DOI: 10.1016/j.pnsc.2008.11.002CrossRefGoogle Scholar
  37. Siegfried T, Bernauer T, Guiennet R, et al. (2012) Will climate change exacerbate water stress in Central Asia? Climatic Change 112(3–4): 881–899. DOI: 10.1007/s10584-011-0253-zCrossRefGoogle Scholar
  38. Sorg A, Bolch T, Stoffel M, et al. (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change 2(10): 725–731. DOI: 10.1038/nclimate1592CrossRefGoogle Scholar
  39. Uhlmann B, Jordan F, Beniston M (2013) Modelling runoff in a Swiss glacierized catchment — part I: methodology and application in the Findelen basin under a long-lasting stable climate. International Journal of Climatology 33: 1293–1300. DOI: 10.1002/joc.3501CrossRefGoogle Scholar
  40. Wu S, Yao Z, Huang H, et al. (2013) Glacier retreat and its effect on stream flow in the source region of the Yangtze River. Journal of Geographical Sciences 23(5): 849–859. DOI: 10.1007/s11442-013-1048-0CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hai-dong Han
    • 1
    Email author
  • Yong-jian Ding
    • 1
  • Shi-yin Liu
    • 1
  • Jian Wang
    • 1
  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations