Skip to main content
Log in

Soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Understanding the soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau (QTP) is very important. On the basis of extensive field surveys and experimental analysis, this study carries out soil taxonomic classification of the permafrost region in the QTP. According to Chinese Soil Taxonomy, the soil of the permafrost region in the QTP can be divided into 6 Orders (Histosols, Aridosols, Gleyosols, Isohumosols, Cambosols, Primosols), 11 Suborders, 19 Groups and 24 Subgroups. Cambosols are the dominant soil type in the permafrost region, followed by Aridosols. From the east to the west of the permafrost region in the QTP, the soil type gradually changes from Cambosols to Aridosols, showing a meridional zonality. The eastern region is dominated by Cambosols, with no obvious latitudinal zonality. From the south to the northwest of the western region, the dominance of Aridosols and Cambosols gradually transited to Aridosols, presenting a latitudinal zonality. The soil in the western region shows a poor vertical zonality, while the distribution of suborders of Cambosols in the eastern region shows a more obvious vertical zonality. The result indicates that precipitation and vegetation are the main factors that influence the zonal distribution of soil. The permafrost in the east has some effect on the vertical soil zonality, but the effect is weakened in the west.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badía D, Martí C, Aznar JM, et al. (2013) Influence of slope and parent rock on soil genesis and classification in semiarid mountainous environments. Geoderma 193: 13–21. DOI: 10.1016/j.geoderma.2012.10.020

    Article  Google Scholar 

  • Baumann F, He JS, Schmidt K, et al. (2009) Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology 15: 3001–3017. DOI: 10.1111/j.1365-2486.2009.01953.x

    Article  Google Scholar 

  • Bockheim JG (1997) Properties and classification of cold desert soils from Antarctica. Soil Science Society of America Journal 61: 224–231. DOI: 10.2136/sssaj1997.03615995006100010031x

    Article  Google Scholar 

  • Cheng GD, Wu TH (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research 112: 1–10. DOI: 10.1029/2006JF000631

    Article  Google Scholar 

  • Cheng ZG, Liu XD (2008) A preliminary study of future permafrost distribution on the Qinghai-Tibet Plateau under global warming conditions. Areal Research and Development 27: 80–85. DOI: 10.3969/j.issn.1003-2363.2008.06.020

    Google Scholar 

  • Chinese Soil Taxonomy Research Group, Institute of Soil science, Chinese Academy of Sciences, Cooperative Research Group on Chinese Soil Taxonomy (2001) Keys to Chinese Soil Taxonomy (3rd Ed.). Chinese Science and Technological University Press, Hefei, China. pp 21–191. (In Chinese)

    Google Scholar 

  • Dahlgren RA, Boettinger JL, Huntington GL, et al. (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78: 207–236. DOI: 10.1016/S0016-7061(97)00034-7

    Article  Google Scholar 

  • Day JH, Rice HM (1964) The characteristics of some permafrost soils in the Mackenzie Valley, N.W.T. Arctic 17: 222–236. DOI: 10.14430/arctic3506

    Article  Google Scholar 

  • Duan ZH, Zhang Y, Zhang W, et al. (2012) Application research of four cold regions land surface and hydrological model to Qinghai-tibet Plateau frozen soil region. Journal of Water Resources and Water Engineering 23: 43–50.

    Google Scholar 

  • Eash NS, Sandor JA (1995) Soil chronosequence and geomorphology in a semi-arid valley in the Andes of southern Peru. Geoderma 65: 59–79. DOI: 10.1016/0016-7061(94) 00025-6

    Article  Google Scholar 

  • Gong ZT (1999) Chinese Soil Taxonomy: Theories, Methods and Practices. Science Press, Beijing, China. p 29. (In Chinese)

    Google Scholar 

  • Gong ZT, Zhang GL, Chen ZC, et al. (2007) Pedogenesis and soil taxonomy. Science Press, Beijing, China. pp 29–94. (In Chinese)

    Google Scholar 

  • Höfle C, Ping CL (1996) Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71: 219–243. DOI: 10.1016/0016-7061(96)00007-9

    Article  Google Scholar 

  • Höfle C, Ping CL, Kimble JM (1998) Properties of permafrost soils on the northern Seward Peninsula, northwest Alaska. Soil Science Society of America Journal 62: 1629–1639. DOI: 10.2136/sssaj1998.03615995006200060021x

    Article  Google Scholar 

  • Huang CY (2000) Pedology. China Agriculture Press, Beijing, China. pp 3–142. (In Chinese)

    Google Scholar 

  • Krasnoshchekov YN (2008) Soil cover of mountain forests in the East Khubsugul region of Mongolia. Eurasian Soil Science 41: 694–703. DOI: 10.1134/S106422930807003X

    Article  Google Scholar 

  • Krasnoshchekov YN (2010) Soils and the soil cover of mountainous tundra and forest landscapes in the Central Khangai of Mongolia. Eurasian Soil Science 43: 117–126. DOI: 10.1134/S1064229310020018

    Article  Google Scholar 

  • Li N, Wang GX, Gao YH, et al. (2009) On soil organic carbon of alpine ecosystem in Qinghai-Tibet Plateau. Soils 41: 512–519. DOI: 10.3321/j.issn:0253-9829.2009.04.002

    Google Scholar 

  • Li SD, Cheng GD (1996) Map of Frozen Ground on Qinghai-Xizang Plateau. Gansu Culture Press, Lanzhou, China.

    Google Scholar 

  • National Soil Survey Center, Natural Resources Conservation Service, U.S. Department of Agriculture (2002) Field Book for Describing and Sampling Soils.

    Google Scholar 

  • Niu YF (1999) The study of environment in the Qinghai-Xizang Plateau. Progress in Geography 18: 163–171.

    Google Scholar 

  • Ping CL, Gary J, Michaelson MT, et al. (2008) High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience 1: 615–619, DOI: 10.1038 /ngeo284

    Article  Google Scholar 

  • Ran YH, Li X, Cheng GD, et al. (2012) Distribution of permafrost in China: An overview of existing permafrost maps. Permafrost and Periglacial Processes 23: 322–333. DOI: 10.1002/ppp.1756

    Article  Google Scholar 

  • Singh S, Parkash B, Rao MS, et al. (2006) Geomorphology, pedology and sedimentology of the Deoha/Ganga-Ghaghara Interfluve, Upper Gangetic Plains (Himalayan Foreland Basin) -Extensional tectonic implications. Catena 67: 183–203. DOI: 10.1016/j.catena.2006.03.013

    Article  Google Scholar 

  • Sommer M (2006) Influence of soil pattern on matter transport in and from terrestrial biogeosystems-A new concept for landscape pedology. Geoderma 133: 107–123. DOI: 10.1016/j. geoderma.2006.03.040

    Article  Google Scholar 

  • Tarnocai C, Canadell J, Schuur E, et al. (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23: 1–11. DOI: 10.1029/2008GB003327

    Article  Google Scholar 

  • Wang GX, Li YS, Wang YB, et al. (2008) Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143: 143–152. DOI: 10.1016/j.geoderma.2007.10.023

    Article  Google Scholar 

  • Wang GX, Qian J, Cheng GD, et al. (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment 291: 207–217. DOI: 10.1016 0048-9697(01)01100-7

    Article  Google Scholar 

  • Wang GX, Wang YB, Li YS, et al. (2007) Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena 70: 506–514. DOI: 10.1016/j.catena.2007.01.001

    Article  Google Scholar 

  • Wang JF, Wu QB (2011) Influences of the vegetation degradation on the shallow cryic soil environment in the wet meadow areas on the Qinghai-Tibetan Plateau. Journal of Lanzhou University (Natural Sciences) 47: 39–45.

    Google Scholar 

  • Wei SG, Dai YJ, Duan QY, et al. (2014) A global soil dataset for Earth System Modeling. Journal of Advances in Modeling Earth Systems 6: 249–263. DOI: 10.1002/2013MS000293

    Article  Google Scholar 

  • Wei SG, Dai YJ, Liu BY, et al. (2012) A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma 171(SI): 85–91. DOI: 10.1016/j.geoderma. 2011.01.013

    Google Scholar 

  • Wei SG, Dai YJ, Liu BY, et al. (2013) A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems 5: 212–224. DOI: 10.1002/jame. 20026

    Article  Google Scholar 

  • Wei YL, Zhou ZH, Liu GC (2012) Physico-chemical properties and enzyme activities of the arable soils in Lhasa, Tibet, China. Journal of Mountain Science 9: 558–569. DOI: 10.1007/s11629-012-2165-4

    Article  Google Scholar 

  • Wu XD, Zhao L, Chen MJ, et al. (2012) Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai -Tibet Plateau, China. Permafrost and Periglacial Processes 23: 162–169. DOI: 10.1002/ppp.1740

    Article  Google Scholar 

  • Yang JP, Ding YJ, Chen RS (2005) NDVI reflection of alpine vegetation changes in the source regions of the Yangtze and Yellow Rivers. Acta Geographica Sinica 60: 467–478. DOI: 10.3321/j.issn:0375-5444.2005.03.013

    Google Scholar 

  • Yang MX, Wang SL, Yao TD, et al. (2004) Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) Plateau. Cold Regions Science and Technology 39: 47–53. DOI:10.1016/j.coldregions.2004.01.002

    Article  Google Scholar 

  • Zhang XM, Sheng Y, Zhao L, et al. (2012) Permafrost distribution using sub-region classification and multivariate data in the Wenquan area over the Qinghai-Tibet Plateau. Scientia Geographica Sinica 32: 1513–1520.

    Article  Google Scholar 

  • Zhao L, Ping CL, Yang DQ, et al. (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Global and Planetary Change 43: 19–31. DOI: 10.1016/j.gloplacha.2004.02.003

    Article  Google Scholar 

  • Zhao YG, Zhang GL (2011) Chinese Soil Map. Science Press, Beijing, China.

    Google Scholar 

  • Zhou YW, Guo DX, Qiu GQ, et al. (2000) Geocryology in China. Science Press, Beijing, China. p 44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Additional information

http://orcid.org/0000-0001-5339-1488

http://orcid.org/0000-0003-0245-8413

http://orcid.org/0000-0002-4519-8378

http://orcid.org/0000-0002-3923-1493

http://orcid.org/0000-0001-8714-0476

http://orcid.org/0000-0002-5428-0445

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Hb., Zhao, L., Wu, Xd. et al. Soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau, China. J. Mt. Sci. 12, 1448–1459 (2015). https://doi.org/10.1007/s11629-014-3133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3133-y

Keywords

Navigation