Advertisement

Journal of Mountain Science

, Volume 13, Issue 4, pp 661–671 | Cite as

Variation in carbon, nitrogen and phosphorus partitioning between above- and belowground biomass along a precipitation gradient at Tibetan Plateau

  • Jiang-tao Hong
  • Xiao-dan WangEmail author
  • Jian-bo Wu
Article

Abstract

Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon (C), nitrogen (N) and phosphorus (P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect (approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass (AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass (AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.

Keywords

Biomass allocation Nutrient concentration Qinghai-Tibetan Plateau Alpine steppe Stipa purpurea 

Abbreviations

GSP

growing season precipitation

TB

Total biomass

AB

Aboveground biomass

BB

Belowground biomass

STP

soil total phosphorus concentration

AB/BB

Aboveground/belowground biomass

AB/BB N

N pool of aboveground biomass/N pool of belowground biomass

AB/BB P

P pool of aboveground biomass/P pool of belowground biomass

AB/BB C

C pool of aboveground biomass/C pool of belowground biomass

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11629_2014_3117_MOESM1_ESM.pdf (127 kb)
Variation in carbon, nitrogen and phosphorus partitioning between above and belowground biomass along a precipitation gradient at Tibetan Plateau

References

  1. Aerts R, Chapin F (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30:1–67. DOI: 10.1016/s0065-2504(08)60016-1CrossRefGoogle Scholar
  2. Bai HZ, Dong AX, Li DL, Feng F (2005) Temporal and spatial characteristics of strong wind and dust days in Qinghai-Xizang Plateau and along Qingzang Railway. Plateau Meteor 24: 311–315. (In Chinese)Google Scholar
  3. Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology 13(10): 2193–2205. DOI: 10.1111/j.1365-2486.2007.01428.xCrossRefGoogle Scholar
  4. Castle S, Neff J (2009) Plant response to nutrient availability across variable bedrock geologies. Ecosystems 12(1): 101–113. DOI: 10.1007/s10021-008-9210-8CrossRefGoogle Scholar
  5. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451: 712–715. DOI: 10.1038/nature06503CrossRefGoogle Scholar
  6. Coombs J, Hind G, Leegood RC, et al. (1985) Analytical techniques. In: Coombs J, Hall DO, Long SP, Scurlock JM (ed.), Techniques in bioproductivity and photosynthesis. Pergamon Press, Oxford, UK. pp 298.Google Scholar
  7. Fan J, Wang K, Harris W, et al. (2009) Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments 73(4-5): 521–528. DOI: 10.1016/j.jaridenv.2008.12.004CrossRefGoogle Scholar
  8. Güsewell S, Koerselman W, Verhoeven JT (2003) Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications 13(2): 372–384. DOI: 10.1890/1051-0761(2003)013CrossRefGoogle Scholar
  9. Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytologist 164(2): 243–266. DOI: 10.1111/j.1469-8137.2004.01192.xCrossRefGoogle Scholar
  10. Garibaldi LA, Kitzberger T, Noemí Mazía C, et al. (2010) Nutrient supply and bird predation additively control insect herbivory and tree growth in two contrasting forest habitats. Oikos 119(2): 337–349. DOI: 10.1111/j.1600-0706.2009.17862.xCrossRefGoogle Scholar
  11. Ghidey F, Alberts E (1997) Plant root effects on soil erodibility, splash detachment, soil strength, and aggregate stability. Transactions of the ASAE 40(1): 129–135. DOI: 10.13031/2013.21257CrossRefGoogle Scholar
  12. Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology 94(6): 1176–1191. DOI: 10.1111/j.1365-2745.2006.01155.xCrossRefGoogle Scholar
  13. Han WX, Fang JY, Reich PB, et al. (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters 14(8): 788–796. DOI: 10.1111/j.1461-0248.2011.01641.xCrossRefGoogle Scholar
  14. Hui D, Jackson RB (2006) Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytologist 169(1): 85–93. DOI: 10.1111/j.1469-8137.2005.01569.xCrossRefGoogle Scholar
  15. Institute of soil academia sinica (1978) Analysis of soil physics and chemistry. Science and Technology of Shanghai Publications, Shanghai, China. (In Chinese)Google Scholar
  16. Jefferies RL, Maron JL (1997) The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystem processes. Trends Ecology & Evolution 12(2): 74–78. DOI: 10.1016/S0169-5347(96)20125-9CrossRefGoogle Scholar
  17. Körner C, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74(3): 411–418. DOI:10.1007/BF00378938CrossRefGoogle Scholar
  18. Kerkhoff AJ, Fagan WF, Elser JJ, et al. (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist 168(4): E103–E122. DOI: 10.1086/507879CrossRefGoogle Scholar
  19. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33(6): 1441–1450. DOI: 10.2307/2404783CrossRefGoogle Scholar
  20. Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Loeppert PA, et al. (eds.), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, USA, pp 869-920.Google Scholar
  21. Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. New York, Springer. pp 299–351.CrossRefGoogle Scholar
  22. Li X, Zhang X, Wu J, et al. (2011) Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental earth sciences 64(7): 1911–1919. DOI: 10.1007/s12665-011-1004-1CrossRefGoogle Scholar
  23. Li Y, Xu XQ, Zhu XM, et al. (1992) Effectiveness of plant roots on increasing the soil permeability on the Loess Plateau. Chinese Science Bulletin 37(20): 1735–1738. (In Chinese)Google Scholar
  24. Luo TX, Li WH, Zhu HZ (2002) Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecological Applications 12(4): 980–997. DOI: 10.1890/1051-0761(2002)012[0980:EBAPON]2.0.CO;2CrossRefGoogle Scholar
  25. Marczak LB, Wieski K, Denno RF, et al. (2013) Importance of local vs. geographic variation in salt marsh plant quality for arthropod herbivore communities. Journal of Ecology 101(5): 1169–1182. DOI: 10.1111/1365-2745.12137Google Scholar
  26. Meier I C, Leuschner C (2010) Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology 16(3): 1035–1045. DOI: 10.1111/j.1365-2486.2009.02074.xCrossRefGoogle Scholar
  27. Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology 12(1): 84–96. DOI: 10.1111/j.1365-2486.2005.001043.xCrossRefGoogle Scholar
  28. Mooney H, Ferrar PJ, Slatyer R (1978) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36(1): 103–111. DOI: 10.1007/BF00344575CrossRefGoogle Scholar
  29. Ordoñez JC, Van Bodegom PM, et al. (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography 18(2): 137–149. DOI: 10.1111/j.1466-8238.2008.00441.xCrossRefGoogle Scholar
  30. Orians GH, Solbrig OT (1977) A cost-income model of leaves and roots with special reference to arid and semiarid areas. The American Naturalist 111(980): 677–690. DOI: 10.1086/283199CrossRefGoogle Scholar
  31. Page AL (1982) Methods of Soil Analysis, Part 2–Chemical and Microbiological Properties 2nd edn. American Society of Agronomy, Madison, WI, USA. pp 595-624.Google Scholar
  32. Posada JM, Schuur EA (2011) Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165(3): 783–795. DOI: 10.1007/s00442-010-1881-0CrossRefGoogle Scholar
  33. Santiago LS, Schuur EA, Silvera K (2005) Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology 21(4): 461–470. DOI: 10.1017/S0266467405002464CrossRefGoogle Scholar
  34. Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C: N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology 14(1): 33–47. DOI: 10.1016/j.ppees.2011.08.002CrossRefGoogle Scholar
  35. Scott D, Billings W (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecological Monographs 34(3): 243–270. DOI: 10.2307/1948502CrossRefGoogle Scholar
  36. Snyman HA (2009) Root studies on grass species in a semi-arid South Africa along a degradation gradient. Agriculture, Ecosystems & Environment 130(3-4): 100–108. DOI: 10.1016/j.agee.2008.12.003CrossRefGoogle Scholar
  37. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, New Jersey, USA. pp 1–43.Google Scholar
  38. Sun J, Cheng GW, Li WP (2013) Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences 10, 1707–1715. DOI: 10.5194/bg-10-1707-2013CrossRefGoogle Scholar
  39. Tibet Land Administrative Bureau (1994) Tibet’s Soil Resources. Beijing Science Press, China. pp 151–158. (In Chinese).Google Scholar
  40. Vogt K, Persson H (1991) Measuring growth and development of roots. Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, Florida, USA. pp 477–501.Google Scholar
  41. Wu TG, Dong Y, Yu MK, et al. (2012) Leaf nitrogen and phosphorus stoichiometry of (Quercus) species across China. Forest Ecology and Management 284: 116–123. DOI: 10.1016/j.foreco.2012.07.025CrossRefGoogle Scholar
  42. Yan Y, Zhang JG, Zhang JH, et al. (2005) The belowground biomass in alpine grassland in Nakchu Prefecture of Tibet. Acta Ecologica Sinica 11: 2818–2823. (In Chinese).Google Scholar
  43. Yang YH, Fang JY, Ji CJ, et al. (2009a). Above-and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science. 20(1): 177–184. DOI: 10.1111/j.1654-1103.2009.05566.xCrossRefGoogle Scholar
  44. Yang YH, Fang JY, Pan YD, et al. (2009b) Aboveground biomass in Tibetan grasslands. Journal of Arid Environments. 73(1): 91–95. DOI: 10.1016/j.jaridenv.2008.09.027CrossRefGoogle Scholar
  45. Ye XH, Pan X, Cornwell WK, et al. (2015) Divergence of aboveand belowground C and N pool within predominant plant species along two precipitation gradients in North China. Biogeosciences 12: 457–465. DOI: 10.5194/bg-12-457-2015CrossRefGoogle Scholar
  46. Yu Q, Chen Q, Elser JJ, et al. (2010) Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters 13(11): 1390–1399. DOI: 10.1111/j.1461-0248.2010.01532.xCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations