Journal of Mountain Science

, Volume 11, Issue 6, pp 1543–1551 | Cite as

Estimation of the land surface emissivity in the hinterland of Taklimakan Desert

  • Yong-qiang Liu
  • Ali Mamtimin
  • Wen Huo
  • Xing-hua Yang
  • Xin-chun Liu
  • Xian-yong Meng
  • Qing He
Research Papers

Abstract

An accurate accounting of land surface emissivity (ɛ) is important both for the retrieval of surface temperatures and the calculation of the longwave surface energy budgets. Since ɛ is one of the important parameterizations in land surface models (LSMs), accurate accounting also improves the accuracy of surface temperatures and sensible heat fluxes simulated by LSMs. In order to obtain an accurate emissivity, this paper focuses on estimating ɛ from data collected in the hinterland of Taklimakan Desert by two different methods. In the first method, ɛ was derived from the surface broadband emissivity in the 8-14 μm thermal infrared atmospheric window, which was determined from spectral radiances observed by field measurements using a portable Fourier transform infrared spectrometer, the mean ɛ being 0.9051. The second method compared the observed and calculated heat fluxes under nearneutral atmospheric stability and estimated ɛ indirectly by minimizing the root-mean-square difference between them. The result of the second method found a mean value of 0.9042, which is consistent with the result by the first method. Although the two methods recover ɛ from different field experiments and data, the difference of mean values is 0.0009. The first method is superior to the indirect method, and is also more convenient.

Keywords

Taklimakan Desert Land surface emissivity Thermal infrared spectra Surface temperature Heat flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanken PD, Black TA, Neumann HH, et al. (1998) Turbulence flux measurements above and below the overstory of a boreal aspen forest. Boundary-Layer Meteorology 89(1): 109–140. DOI: 10.1023/A:1001557022310CrossRefGoogle Scholar
  2. Bonan GB (1996) A land surface model (LSM ver. 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR/TN-417-STR, NCAR, Boulder, CO. p 150.Google Scholar
  3. Bonan GB (1998) The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model. Journal of Climate 11(6): 1307–1326. DOI: 10.1175/1520-0442(1998)011〈1307:TLSCOT〉2.0.CO;2CrossRefGoogle Scholar
  4. Dai Y, Zeng X, Dickinson RE, et al. (2003) The Common Land Model. Bulletin of the American Meteorological Socciety 84(8): 1013–1023. DOI: 10.1175/BAMS-84-8-1013CrossRefGoogle Scholar
  5. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR community climate model. NCAR/TN-275-STR, NCAR, Boulder, CO. p 48.Google Scholar
  6. Foken T, Göckede M, Mauder M, et al. (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds), Handbook of micrometeorology: A guide for surface flux measurement and analysis. Dordrecht: Kluwer Academic Publishers. pp 181–208.Google Scholar
  7. Hook SJ, Kahle AB (1996) The micro Fourier transform interferometer (μFTIR)-A new field spectrometer for acquisition of infrared data of natural surfaces. Remote Sensing of Environment 56(3): 172–181. DOI: 10.1016/0034-4257(95)00231-6CrossRefGoogle Scholar
  8. Hori M, Aoki T, Tanikawa T, et al. (2006) In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sensing of Environment 100(4): 486–502. DOI: 10.1016/j.rse.2005.11.001CrossRefGoogle Scholar
  9. Kahle AB, Alley RE (1992) Separation of temperature and emittance in remotely sensed radiance measurements. Remote Sensing of the Environment 42(2): 107–111. DOI: 10.1016/0034-4257(92)90093-YCrossRefGoogle Scholar
  10. Kealy PS, Hook SJ (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: Implications for recovering land surface temperatures. Geoscience and Remote Sensing, IEEE Transactions on 31(6): 1155–1164. DOI: 10.1109/36.317447CrossRefGoogle Scholar
  11. Korb AR, Dybwad P, Wadsworth W, Salisbury JW (1996) Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity. Applied Optics 35(10): 1679–1692. DOI: 10.1364/AO.35.001679CrossRefGoogle Scholar
  12. Korb AR, Salisbury JW, D’Aria DM (1999) Thermal-infrared remote sensing and Kirchhoff’s law: 2. Field measurements. Journal of Geophysical Research: Solid Earth 104(B7): 15339–15350. DOI: 10.1029/97JB03537CrossRefGoogle Scholar
  13. Jin M, Liang S (2006) An improved land surface emissivity parameter for land surface models using global remote sensing observations. Journal of Climate 19(12): 2867–2881. DOI: 10.1175/JCLI3720.1CrossRefGoogle Scholar
  14. Liang S (2001) An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. Geoscience and Remote Sensing, IEEE Transactions on 39(2): 264–274. DOI: 10.1109/36.905234CrossRefGoogle Scholar
  15. Lin FF, Deng JS, Ding XD, et al. (2010) Preliminary research on field measurement of spectral emissivity of rice in thermal infrared. Journal of Zhejiang University (Agricultural and Life Sciences) 36(2): 175–180. (In Chinese)Google Scholar
  16. Liu Y, He Q, Zhang H, Mamtimin A (2012) Improving the CoLM in Taklimakan Desert hinterland with accurate key parameters and an appropriate parameterization scheme. Advances in Atmospheric Sciences 29(2): 381–390. DOI: 10.1007/s00376-011-1068-6CrossRefGoogle Scholar
  17. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology 37(1–2): 17–35. DOI: 10.1007/BF00122754CrossRefGoogle Scholar
  18. Ogawa K, Schmugge T (2004) Mapping surface broadband emissivity of the Sahara Desert using ASTER and MODIS data. Earth Interactions 8(7): 1–14. DOI: 10.1175/1087-3562(2004)008〈0001:MSBEOT〉2.0.CO;2CrossRefGoogle Scholar
  19. Olioso A (1995) Simulating the relationship between thermal emissivity and Normalized Difference Vegetation Index. International Journal of Remote Sensing 16(16): 3211–3216. DOI: 10.1080/01431169508954625CrossRefGoogle Scholar
  20. Prabhakara C, Dalu G (1976) Remote sensing of the surface emissivity at 9μm over the globe. Journal of Geophysical Research 81(21): 3719–3724. DOI: 10.1029/JC081i021p03719CrossRefGoogle Scholar
  21. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Sciences 43(6): 505–531. DOI: 10.1175/1520-0469(1986)043〈0505:ASBMFU〉2.0.CO;2CrossRefGoogle Scholar
  22. Snyder WC, Wan Z, Zhang Y, Feng YZ (1998) Classificationbased emissivity for land surface temperature measurement from space. International Journal of Remote Sensing 19(14): 2753–2774. DOI: 10.1080/014311698214497CrossRefGoogle Scholar
  23. Stewart JB, Kustas WP, Humes KS, et al. (1994) Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas. Journal of Applied Meteorology and Climatology 33(9): 1110–1117. DOI: 10.1175/1520-0450(1994)0331110:SHFRST>2.0.CO;2CrossRefGoogle Scholar
  24. Van de Griend AA, Owe M (1993) On the relationship between thermal emissivity and normalized vegetation index for natural surfaces. International Journal of Remote Sensing 14(6): 1119–1131. DOI: 10.1080/01431169308904400CrossRefGoogle Scholar
  25. Verhoef A, de Bruin HAR, van den Hurk BJJM (1997) Some practical notes on the parameter kB-1 for sparse vegetation. Journal of Applied Meteorology 36(5): 560–572. DOI: 10.1175/1520-0450(1997)036〈0560:SPNOTP〉2.0.CO;2CrossRefGoogle Scholar
  26. Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. Geoscience and Remote Sensing, IEEE Transactions on 34(4): 892–905. DOI: 10.1109/36.508406CrossRefGoogle Scholar
  27. Wan Z, Li ZL (1997) A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. Geoscience and Remote Sensing, IEEE Transactions on 35(4): 980–996. DOI: 10.1109/36.602541CrossRefGoogle Scholar
  28. Wang H, Pan Y, Li H, Yao M (2009) Measuring spectral emissivity of natural objects with FTIR. Infrared Technology 31(4): 210–214. (In Chinese)Google Scholar
  29. Wang XB, Yang SZ, Qiao YL, et al. (2006) Field measurement methods for thermal infrared spectral emissivity of terrestrial surface materials. Journal of Atmospheric and Environmental Optics 1(2): 105–111. (In Chinese)Google Scholar
  30. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106(447): 85–100. DOI: 10.1002/qj.49710644707CrossRefGoogle Scholar
  31. Wilber AC, Kratz DP, Gupta SK (1999) Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA/TP-1999-209362, Langley Research Center. pp 7–9.Google Scholar
  32. Yang K, Koike T, Ishikawa H, et al. (2008) Turbulent flux transfer over bare soil surfaces: Characteristics and parameterization. Journal of Applied Meteorology and Climatology 40(1): 276–290. DOI: 10.1175/2007JAMC1547.1CrossRefGoogle Scholar
  33. Zhang Y, Yang H, Zheng ZJ, et al. (2009) Field measurements of meadow surface emissivity spectra at the Xilinhaote grassland of China. Acta Prataculturae Sinica 18(5): 31–39. (In Chinese)Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yong-qiang Liu
    • 1
    • 2
    • 3
  • Ali Mamtimin
    • 4
    • 5
  • Wen Huo
    • 4
    • 5
  • Xing-hua Yang
    • 4
    • 5
  • Xin-chun Liu
    • 4
    • 5
  • Xian-yong Meng
    • 1
    • 2
  • Qing He
    • 4
    • 5
  1. 1.College of Resource & Environmental SciencesXinjiang UniversityUrumqiChina
  2. 2.Key Laboratory of Oasis EcologyMinistry of EducationUrumqiChina
  3. 3.Key Laboratory of City Intellectualizing and Environment ModelingXinjiang UniversityUrumqiChina
  4. 4.Institute of Desert MeteorologyChina Meteorological AdministrationUrumqiChina
  5. 5.Desert Atmosphere & Environment Observation Experiment Station of TaklimakanTazhongChina

Personalised recommendations