Journal of Mountain Science

, Volume 12, Issue 1, pp 177–185 | Cite as

Implication of surface fractal analysis to evaluate the relative sensitivity of topography to active tectonics, Zagros Mountains, Iran

  • Ali Faghih
  • Ahmad NourbakhshEmail author


Fractal geometry is increasingly becoming a useful tool for modeling and quantifying the complex patterns of natural phenomena. The Earth’s topography is one of these phenomena that have fractal characteristics. This paper investigates the relative sensitivity of topography to active tectonics using ASTER Global Digital Elevation Model. The covering divider method was used for direct extraction of surface fractal dimension (D surf ) to estimate the roughness-surface of topography with aid of geographic information system (GIS) techniques. This evaluation let us highlight the role of the geomorphic and tectonic processes on the spatial variability of fractal properties of natural landforms. Geomorphic zones can be delineated using fractal dimension mapping in which variability of surface fractal dimension reflects the roughness of the landform surface and is a measure of topography texture. Obtained results showed this method can be a quick and easy way to assess the distribution of land surface deformation in different tectonic settings. The loose alluvial deposits and irregularities derived by tectonic activity have high fractal dimensions whereas the competent formations and higher wavelength folded surfaces have lower fractal dimensions. According to the obtained results, the Kazerun Fault Zone has a crucial role in the separation of the Zagros Mountain Ranges into the different lithological, geomorphological and structural zones.


Surface fractal analysis Topography Active tectonics Kazerun Fault Zone Zagros Iran 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrle R, Abrahams AD (1989) Fractal techniques and the surface roughness of talus slopes. Earth Surface processes and landforms 14(3): 197–209. DOI: 10.1002/esp.3290140303.CrossRefGoogle Scholar
  2. Andrle R (1996) The west coast of Britain: statistical self-similarity vs. characteristic scales in the landscape. Earth Surface Processes and Landforms 21(10): 955–962. DOI: 10.1002/(SICI)1096-9837(199610)21:10〈955::AID-ESP639〉3.0.CO;2-Y.CrossRefGoogle Scholar
  3. Authemayou C, Bellier O, Chardon D, et al. (2005) Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran). Comptes Rendus Geoscience 337: 539–545. doi: 10.1016/j.crte.2004.12.007.CrossRefGoogle Scholar
  4. Aviles CA, Scholz CH, Boatwright J (1987) Fractal analysis applied to characteristic segments of the San Andreas Fault. Journal of Geophysical Research 92: 331–344. DOI: 10.1029/JB092iB01p00331.CrossRefGoogle Scholar
  5. Baker C, Jackson J, Priestley K (1993) Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: strike-slip faulting within a fold-and-thrust belt. Geophysical Journal International 115: 41–61. DOI: 10.1111/j.1365-246X.1993.tb05587.x.CrossRefGoogle Scholar
  6. Barton CC (1995) Fractal analysis of scaling and spatial clustering of fractures. Fractals in the earth sciences: 141–178. DOI: 10.1007/978-1-4899-1397-5_8.CrossRefGoogle Scholar
  7. Beauvais AA, Montgomery DR (1997) Are channel networks statistically self-similar? Geology 25(12): 1063–1066. DOI: 10.1130/0091-7613(1997)025〈1063:ACNSSS〉2.3.CO;2.CrossRefGoogle Scholar
  8. Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241(3): 193–224. 10.1016/0040-1951(94)00185-CCrossRefGoogle Scholar
  9. Bi L, He H, Wei Z, et al. (2012) Fractal properties of landforms in the Ordos Block and surrounding areas, China. Geomorphology 175–176: 151–162. DOI: 10.1016/j.geomorph.2012.07.006CrossRefGoogle Scholar
  10. Burrough PA (1983) Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. Journal of Soil Science 34(3): 577–597. DOI: 10.1111/j.1365-2389.1983.tb01057.xCrossRefGoogle Scholar
  11. Champagnac JD, Molnar P, Sue C, et al. (2012) Tectonics, climate, and mountain topography. Journal of Geophysical Research Solid Earth 117(B02403): 1–34. DOI: 10.1029/2011JB008348.Google Scholar
  12. Chase CG, (1992) Fluvial land sculpting and the fractal dimension of topography. Geomorphology 5: 39–57. DOI: 10.1016/0169-555X(92)90057-U.CrossRefGoogle Scholar
  13. Chaudhuri BA, Sarkar N (1995) Texture segmentation using fractal dimension. Pattern Analysis and Machine Intelligence IEEE Transactions on 17(1): 72–77. DOI: 10.1109/34.368149.CrossRefGoogle Scholar
  14. Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers and Geosciences 12(5): 713–722. DOI: 10.1016/0098-3004(86)90047-6.CrossRefGoogle Scholar
  15. Drăguţ L, Eisank C (2012) Automated object-based classification of topography from SRTM data. Geomorphology 141: 21–33. DOI: 10.1016/j.geomorph.2011.12.001.Google Scholar
  16. Eastman JR (1985) Single-pass measurement of the fractal dimension of digitized cartographic lines: paper presented at the annual conference of the Canadian Cartographic Association.Google Scholar
  17. Etzelmüller B, Sulebak JR (2000) Developments in the use of digital elevation models in periglacial geomorphology and glaciology. Physische Geographie 41: 35–58.Google Scholar
  18. Etzelmüller B, Ødegård RS, Berthling I, et al. (2001) Terrain parameters and remote sensing in the analysis of permafrost distribution and periglacial processes: Principles and examples from southern Norway. Permafrost and Periglacial Processes 12: 79–92. DOI: 10.1002/ppp.384.CrossRefGoogle Scholar
  19. Falcon NL (1969) Problems of the relationship between surface structure and deep displacements illustrated by the Zagros Range. Geological Society, London, Special Publications 3(1): 9–21. DOI: 10.1144/GSL.SP.1969.003.01.02.CrossRefGoogle Scholar
  20. Falconer KJ (1990) Fractal geometry Mathematical Foundations and Applications. John Wiley and sons, Chichester, UK. p. 366.Google Scholar
  21. Fedder J (1988) Fractal. Plenum Press, New York, USA. p 284.CrossRefGoogle Scholar
  22. Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381(1): 235–273. DOI: 10.1016/j.tecto.2002.06.004.CrossRefGoogle Scholar
  23. Goodchild MF (1982) The fractional Brownian process as a terrain simulation model. Modeling and Simulation 13: 1133–1137.Google Scholar
  24. Goodchild MF (2011) Scale in GIS: An overview. Geomorphology 130(1): 5–9. DOI: 10.1016/j.geomorph.2010.10.004.CrossRefGoogle Scholar
  25. Hatzfeld D, Molnar P (2010) Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics 48: RG2005. DOI: 10.1029/2009RG000304.CrossRefGoogle Scholar
  26. Hilley GE, Arrowsmith JR (2008) Geomorphic response to uplift along the Dragon’s Back pressure ridge, Carrizo Plain, California. Geology 36(5): 367–370. DOI: 10.1130/G24517A.1.CrossRefGoogle Scholar
  27. Hjort J, Luoto M (2006) Modelling patterned ground distribution in Finnish Lapland: An integration of topographical, ground and remote sensing information. Geografiska Annaler Series a-Physical Geography 88A: 19–29. DOI: 10.1111/j.0435-3676.2006.00280.x.CrossRefGoogle Scholar
  28. Holtz F, Lenné S, Ventura G, et al. (2004) Non-linear deformation and break up of enclaves in a rhyolitic magma: A case study from Lipari Island (southern Italy). Geophysical Research Letters 31(24611). DOI: 10.1029/2004GL021590.Google Scholar
  29. Huang J, Turcotte DL (1989) Fractal mapping of digitized images: Application to the topography of Arizona and comparisons with synthetic images. Journal of Geophysical Research Solid Earth 94(B6): 7491–7495. DOI: 10.1029/JB094iB06p07491.CrossRefGoogle Scholar
  30. Ida T, Sambonsugi Y (1998) Image segmentation and contour detection using fractal coding. Circuits and Systems for Video Technology, IEEE Transactions on 8(8): 968–975. DOI: 10. 1109/76.736726.CrossRefGoogle Scholar
  31. Klinkenberg B (1992) Fractals and morphometric measures: is there a relationship? Geomorphology 5(1): 5–20. DOI: 10. 1016/0169-555X(92)90055-S.CrossRefGoogle Scholar
  32. Klinkenberg B (1994) A review of methods used to determine the fractal dimension of linear features. Mathematical Geology 26(1): 23–46. DOI: 10.1007/BF02065874.CrossRefGoogle Scholar
  33. Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam, Netherlands. p 424.Google Scholar
  34. Kusumayudha SB, Zen MT, Notosiswoyo S, et al. (2000) Fractal analysis of the Oyo River, cave systems, and topography of the Gunungsewu karst area, central Java, Indonesia. Hydrogeology Journal 8(3): 271–278. DOI: 10.1007/s100400050014.CrossRefGoogle Scholar
  35. La Barbera P, Rosso R (1989) On the fractal dimension of stream networks. Water Resources Research 25(4): 735–741. DOI: 10.1029/WR025i004p00735.CrossRefGoogle Scholar
  36. Lifton NA, Chase CG (1992) Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology 5(1): 77–114. DOI: 10.1016/0169-555X(92)90059-W.CrossRefGoogle Scholar
  37. Liu T (1992) Fractal structure and properties of stream networks. Water resources research 28(11): 2981–2988. DOI: 10.1029/92WR01516.CrossRefGoogle Scholar
  38. Liu, SC, Chang S (1997) Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. Image Processing, IEEE Transactions on 6(8): 1176–1184. 10.1109/83.605414.CrossRefGoogle Scholar
  39. Luoto M, Seppala M (2002) Modelling the distribution of palsas in Finnish lapland with logistic regression and GIS. Permafrost and Periglacial Processes 13: 17–28. DOI: 10.1002/ppp.404.CrossRefGoogle Scholar
  40. Luoto M, Hjort J (2004) Generalized linear modelling in periglacial studies: Terrain parameters and patterned ground. Permafrost and Periglacial Processes 15: 327–338. DOI: 10.1002/ppp.482.CrossRefGoogle Scholar
  41. Luoto M, Hjort J (2005) Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology 67: 299–315. DOI: 10.1016/j.geomorph.2004.10.006.CrossRefGoogle Scholar
  42. MacMillan RA, Shary PA (2009) Landforms and landform elements in geomorphometry. Developments in soil science 33: 227–254. DOI: 10.1016/S0166-2481(08)00009-3CrossRefGoogle Scholar
  43. Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers 3: 407–428. DOI: 10.1016/j.gsf.2011.12.002.CrossRefGoogle Scholar
  44. Mandelbrot BB (1967) How long is the coast of Britain. Science 156(3775): 636–638. DOI: 10.1126/science.156.3775.636CrossRefGoogle Scholar
  45. Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, San Francisco, CA, USA. p 468.Google Scholar
  46. Mark DM (1984) Fractal dimension of a coral reef at ecological scales: a discussion. Marine ecology Progress series 14(2–3): 293–294.CrossRefGoogle Scholar
  47. Mark DM, Aronson PB (1984) Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Journal of the International Association for Mathematical Geology 16(7): 671–683. DOI: 10.1007/BF01033029.CrossRefGoogle Scholar
  48. McBratney AB, Santos MLM, Minasny B (2003) On digital soil mapping. Geoderma 117: 3–52. DOI: 10.1016/S0016-7061(03)00223-4.CrossRefGoogle Scholar
  49. Mobasher K, Babaie HA (2008) Kinematic significance of fold-and fault-related fracture systems in the Zagros Mountains, southern Iran. Tectonophysics 451(1): 156–169. DOI: 10.1016/j.tecto.2007.11.060.CrossRefGoogle Scholar
  50. Motiei H (1993) Stratigraphy of Zagros. Treatise on the geology of Iran. Geological Survey of Iran. p 536.Google Scholar
  51. Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532: 27–60. DOI: 10.1016/j.tecto.2012.01.022.CrossRefGoogle Scholar
  52. Nikora VI, Sapozhnikov VB (1993) River network fractal geometry and its computer simulation. Water Resources Research 29(10): 3569–3575. DOI: 10.1029/93WR00966.CrossRefGoogle Scholar
  53. Peitgen HO, Jurgens H, Saupe D (1992) Chaos and Fractals: New Frontiers of Science. Springer, Berlin, Germany. p 864.CrossRefGoogle Scholar
  54. Pentland AP (1984) Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 661–674. DOI: 10.1109/TPAMI.1984.4767591.CrossRefGoogle Scholar
  55. Persson BNJ (2014) On the Fractal Dimension of Rough Surfaces. Tribology Letters 54(1): 99–106. DOI: 10.1007/s11249-014-0313-4.CrossRefGoogle Scholar
  56. Perugini D, Poli G (2005) Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: field evidence and fluid-mechanics experiments. Geology 33(1): 5–8. DOI: 10.1130/G21075.1.CrossRefGoogle Scholar
  57. Perugini D, Petrelli M, Poli G (2006) Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth and Planetary Science Letters 243(3): 669–680. DOI: 10.1016/j.epsl.2006.01.026.CrossRefGoogle Scholar
  58. Perugini D, Valentini L, Poli G (2007) Insights into magma chamber processes from the analysis of size distribution of enclaves in lava flows: A case study from Vulcano Island (Southern Italy). Journal of Volcanology and Geothermal Research 166(3): 193–203. DOI: 10.1016/j.jvolgeores.2007.07.017.CrossRefGoogle Scholar
  59. Perugini D, Kueppers U (2012) Fractal analysis of experimentally generated pyroclasts: A tool for volcanic hazard assessment. Acta Geophysica 60(3): 682–698. DOI: 10.2478/s11600-012-0019-7.CrossRefGoogle Scholar
  60. Pike RJ (2000) Geomorphometry-diversity in quantitative surface analysis. Progress in Physical Geography 24(1): 1–20. DOI: 10.1177/030913330002400101.Google Scholar
  61. Rahman Z, Slob S, Hack R (2006) Deriving roughness characteristics of rock mass discontinuities from terrestrial laser scan data. In Proceedings of 10th IAEG Congress: Engineering geology for tomorrow’s cities, Nottingham, UK.Google Scholar
  62. Ramisch A, Bebermeier W, Hartmann K, et al. (2012) Fractals in topography: Application to geoarchaeological studies in the surroundings of the necropolis of Dahshur, Egypt. Quaternary International 266: 34–46. DOI: 10.1016/j.quaint.2012.02.045.CrossRefGoogle Scholar
  63. Richardson LF (1961) The problem of contiguity. General systems yearbook 6: 139–187.Google Scholar
  64. Sammis CG, Osborne RH, Anderson JL, et al. (1986) Selfsimilar cataclasis in the formation of fault gouge. Pure and Applied Geophysics 124(1–2): 53–78. DOI: 10.1007/BF00875719.CrossRefGoogle Scholar
  65. Sarkarinejad K, Azizi A (2008) Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology 30(1): 116–136. DOI: 10.1016/j.jsg.2007.10.001.CrossRefGoogle Scholar
  66. Seekell DA, Pace ML, Tranvik LJ, et al. (2013) A fractal-based approach to lake size-distributions. Geophysical Research Letters 40(3): 517–521. DOI: 10.1002/grl.50139.CrossRefGoogle Scholar
  67. Sepehr M, Cosgrove JW (2005) Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran. Tectonics 24: TC5005. DOI: 10.1029/2004TC001725.CrossRefGoogle Scholar
  68. Shelberg MC, Lam N, Moellering H (1983) Measuring the fractal dimensions of surfaces. Defense Mapping Agency Aerospace Center ST Louis AFS MO.Google Scholar
  69. Shen XH, Zou LJ, Zhang GF, et al. (2011) Fractal characteristics of the main channel of Yellow River and its relation to regional tectonic evolution. Geomorphology 127(1): 64–70. DOI: 10.1016/j.geomorph.2010.12.007.CrossRefGoogle Scholar
  70. Snow RS (1989) Fractal sinuosity of stream channels. Pure and applied geophysics 131(1–2): 99–109. DOI: 10.1007/BF00874482.CrossRefGoogle Scholar
  71. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196(1): 17–33. DOI: 10.1016/S0012-821X(01)00588-X.CrossRefGoogle Scholar
  72. Sukmono S, Zen MT, Kadir WGA, et al. (1996) Fractal geometry of the Sumatra active fault system and its geodynamical implications. Journal of Geodynamics 22(1): 1–9. DOI: 10.10 16/0264-3707(96)00015-4.CrossRefGoogle Scholar
  73. Sung QC, Chen YC, Chao PC (1998) Spatial variation of fractal parameters and its geological implications. Terrestrial, Atmospheric and Oceanic Sciences 9(4): 655–672.Google Scholar
  74. Sung QC, Chen YC (2004) Self-affinity dimensions of topography and its implications in morphotectonics: an example from Taiwan. Geomorphology 62(3): 181–198. DOI: 10.1016/j.geomorph.2004.02.012.CrossRefGoogle Scholar
  75. Tachikawa T, Hato M, Kaku M, et al. (2011) Characteristics of ASTER GDEM version 2. In Geoscience and Remote Sensing Symposium (IGARSS) IEEE International: 3657–3660. DOI: 10.1109/IGARSS.2011.6050017.Google Scholar
  76. Talbot CJ, Alavi M (1996) The past of a future syntaxis across the Zagros. Geological Society, London, Special Publications 100(1): 89–109. DOI: 10.1144/GSL.SP.1996.100.01.08.CrossRefGoogle Scholar
  77. Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International 156: 506–526. DOI: 10.1111/j.1365-246X.2004.02092.x.CrossRefGoogle Scholar
  78. Tarboton DG, Bras RL, Rodriguez-Iturbe I (1988) The fractal nature of river networks. Water Resources Research 24(8): 1317–1322. DOI: 10.1029/WR024i008p01317.CrossRefGoogle Scholar
  79. Tarolli P (2014) High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 216: 295–312. DOI: 10.1016/j.geomorph.2014.03.008.CrossRefGoogle Scholar
  80. Tavakoli F, Walpersdorf A, Authemayou C, et al. (2008) Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science Letters 275: 342–347. DOI: 10.1016/j.epsl.2008.08.030.CrossRefGoogle Scholar
  81. Turcotte DL (1986) Fractals and fragmentation. Journal of Geophysical Research Solid Earth 91: 1921–1926. DOI: 10.1029/JB091iB02p01921.CrossRefGoogle Scholar
  82. Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge University Press, New York, USA. p 416.Google Scholar
  83. Wilson TH, Dominic J (1998) Fractal interrelationships between topography and structure. Earth Surface Processes and Landforms 23(6): 509–525. DOI: 10.1002/(SICI)1096-9837(199806)23:6〈509::AID-ESP864〉3.0.CO;2-D.CrossRefGoogle Scholar
  84. Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. John Wiley and Sons, New York, USA. p 479.Google Scholar
  85. Xie H, Wang JA, Stein E (1998) Direct fractal measurement and multifractal properties of fracture surfaces. Physics letters A 242(1): 41–50. DOI: 10.1016/S0375-9601(98)00098-X.CrossRefGoogle Scholar
  86. Xie H, Wang JA (1999) Direct fractal measurement of fracture surfaces. International Journal of Solids and Structures 36(20): 3073–3084. DOI: 10.1016/S0020-7683(98)00141-3.CrossRefGoogle Scholar
  87. Xu T, Moore ID, Gallant JC (1993) Fractals, fractal dimensions and landscapes — a review. Geomorphology 8(4): 245–262. DOI: 10.1016/0169-555X(93)90022-T.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Earth Sciences, College of SciencesShiraz UniversityShirazIran

Personalised recommendations