Advertisement

Journal of Mountain Science

, Volume 11, Issue 3, pp 644–655 | Cite as

Alpine activity patterns of Mitopus morio (Fabricius, 1779) are induced by variations in temperature and humidity at different scales in central Norway

  • Nils HeinEmail author
  • Roland Pape
  • Oliver-D. Finch
  • Jörg Löffler
Article

Abstract

Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio (Fabricius, 1779) were studied along different alpine gradients in the central Norwegian Scandes. Within a nested design, we surveyed 18 alpine habitats with pitfall traps and microclimatological equipment along oceanic-continental, two elevational, and (fine-scaled) microtopographic gradients. Sites in the oceanic region of the Scandes showed generally higher abundance of M. morio than sites in the continental region. Furthermore, along the elevational gradient, middle-alpine sites showed higher abundances than low-alpine sites. These general patterns are best explained by higher humidity in the oceanic region and in the middlealpine belt. Focusing at a finer scale, i.e. one elevational level within each region, revealed partly opposing activity patterns within relatively short distances. While in the western middle-alpine belt these patterns were best explained by humidityrelated measures but now with higher activity abundance during drier conditions, in the drier eastern middle-alpine belt heat sums rather than humidity were found to be the best explanatory variables for the observed patterns. Hence, our results imply a pronounced different reaction of the two populations towards climatic variables that partly even contradict the previously described general pattern. Regardless whether these differences in activity abundance in M. morio are a form of phenotypic plasticity or adaptation, our findings stress the importance of detailed autecological knowledge combined with fine-scaled climatic measurements when aiming at predictions about possible future ecosystem structures and spatiotemporal phenomena. M. morio proves to be an ideal biogeographic model organism for understanding spatio-temporal responses of alpine ecosystems under modified climatic conditions.

Keywords

Climate gradients Opiliones Arcticalpine ecosystems High mountains Scandinavia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACIA (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge, UK. p. 144.Google Scholar
  2. Adams J (1984) The habitat and feeding ecology of woodland Harvestmen (Opiliones) in England. Oikos 42: 361–370. DOI: 10.2307/3544406CrossRefGoogle Scholar
  3. Arthofer W, Rauch H, Thaler-Knoflach B, et al. (2013) How diverse is Mitopus morio? Integrative taxonomy detects cryptic species in a small-scale sample of a widespread harvestman. Molecular Ecology 22: 3850–3863. DOI: 10.1111/mec.12340CrossRefGoogle Scholar
  4. Bär A, Pape R, Bräuning A, et al. (2008): Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than micro-climatic differences. Journal of Biogeography 35: 625–636. DOI: 10.1111/j.1365-2699.2007.01804.xCrossRefGoogle Scholar
  5. Bristowe WS (1949) The distribution of Harvestmen (Phalangida) in Great Britain and Ireland, with notes on their names, enemies and food. Journal of Animal Ecology 18: 100–114. DOI: 10.2307/1584CrossRefGoogle Scholar
  6. Buse A, Hadley D, Sparks T (2001) Arthropod distribution on an alpine elevational gradient: the relationship with preferred temperature and cold tolerance. European Journal of Entomology 98: 301–309. DOI: 10.14411/eje.2001.052CrossRefGoogle Scholar
  7. Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, et al. (2012) How does climate change cause extinction? Proceedings of the Royal Society B: Biological Sciences. Published online on 17 October 2012. DOI: 10.1098/rspb.2012.1890Google Scholar
  8. Chatzaki M, Lymberakis P, Markakis G, et al. (2005) The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species richness, activity and altitudinal range. Journal of Biogeography 32: 813–831. DOI: 10.1111/j.1365-2699.2004.01189.xCrossRefGoogle Scholar
  9. Chatzaki M, Lymberakis P, Mitov P, et al. (2009) Phenology of Opiliones on an altitudinal gradient on Lefka Ori Mountains, Crete, Greece. Journal of Arachnology 37: 139–146. DOI: 10.1636/T07-38.1CrossRefGoogle Scholar
  10. Chen IC, Hill JK, Ohlemåller R, et al. (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024–1026. DOI: 10.1126/science.1206432CrossRefGoogle Scholar
  11. Dobson AJ (1990) An Introduction to Generalized Linear Models. Chapman and Hall, London, UK.CrossRefGoogle Scholar
  12. Finch OD, Löffler J (2010) Indicators of species richness at the local scale in an alpine region: A comparative approach between plant and invertebrate taxa. Biodiversity and Conservation 19: 1341–1352. DOI: 10.1007/s10531-009-9765-5CrossRefGoogle Scholar
  13. Finch OD, Löffler J, Pape R (2008) Assessing the sensitivity of Melanoplus frigidus (Boheman, 1846) (Orthoptera: Acrididae) to different weather conditions: A modelling approach focussing on development times. Insect Science 15:167–178. DOI: 10.1111/j.1744-7917.2008.00198.xCrossRefGoogle Scholar
  14. Gillingham PK, Palmer SCF, Huntley B, et al. (2012) The relative importance of climate and habitat in determining the distributions of species at different spatial scales: a case study with ground beetles in Great Britain. Ecography 35: 831–838. DOI: 10.1111/j.1600-0587.2011.07434.xCrossRefGoogle Scholar
  15. Hillyard PD, Sankey JHP (1989) Harvestmen. Synopsis of the British Fauna (New Series). No. 4.Google Scholar
  16. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80: 489–513. DOI: 10.1017/S146479310 5006767CrossRefGoogle Scholar
  17. Hoenen S, Gnaspini P (1999) Activity rhythms and behavioral characterization of two epigean and one cavernicolous harvestmen (Arachnida, Opiliones, Gonyleptidae). The Journal of Arachnology 27: 159–164Google Scholar
  18. Huntley B, Altwegg R, Barnard P, et al. (2012) Modelling relationships between species spatial abundance patterns and climate. Global Ecology and Biogeography 21: 668–681. DOI: 10.1111/j.1466-8238.2011.00701.xCrossRefGoogle Scholar
  19. Hågvar S, Benestad Hågvar E (2011) Invertebrate activity under snow in a South-Norwegian spruce forest. Soil Organisms 83: 187–209.Google Scholar
  20. IPCC (2007a) Climate change 2007 — the physical science basis. Cambridge University Press, Cambridge, UK. p. 996.Google Scholar
  21. IPCC (2007b) Climate change 2007 — impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, UK. p. 976.Google Scholar
  22. Jackman, S (2012) pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University. Department of Political Science, Stanford University. Stanford, California, USA. R package version 1.04.4. Available online: http://pscl.stanford.edu/ (Accessed on 26 April 2013)Google Scholar
  23. Johnson DM, Büntgen U, Frank DC et al. (2010) Climatic warming disrupts recurrent alpine insect outbreaks. Proceedings of the National Academy of Sciences 107: 20576–20581. DOI: 10.1073/pnas.1010270107CrossRefGoogle Scholar
  24. Kausrud KL, Mysterud A, Steen H, et al. (2008) Linking climate change to lemming cycles. Nature 456: 93–97. DOI: 10.1038/nature07442CrossRefGoogle Scholar
  25. Lawler JL, Shafer SL, White D, et al. (2009) Projected climateinduced faunal change in the Western Hemisphere. Ecology 90: 588–597. DOI10.1890/08-0823.1CrossRefGoogle Scholar
  26. Löffler J, OD Finch (2005) Spatio-temporal gradients between high mountain ecosystems of central Norway. Arctic, Antarctic, and Alpine Research 37: 499–513. DOI: 10.1657/1523-0430(2005)037[0499:SGBHME]2.0.CO;2CrossRefGoogle Scholar
  27. Löffler J, Pape R (2004) Across-scale temperature modelling using a simple approach for the characterization of high mountain ecosystem complexity. Erdkunde 58: 331–348. DOI: 10.3112/erdkunde.2004.04.04CrossRefGoogle Scholar
  28. Löffler J, Pape R, Wundram D (2006) The climatologic significance of topography, altitude and region in high mountains — A survey of oceanic-continental differentiations of the Scandes. Erdkunde, 60: 15–24. DOI: 10.3112/erdkunde.2006.01.02CrossRefGoogle Scholar
  29. Löffler J, Anschlag K, Baker B, et al. (2011) Mountain ecosystem response to global change. Erdkunde 65: 191–215. DOI: 10.3112/erdkunde.2011.02.06CrossRefGoogle Scholar
  30. Long JS (1997) Regression models for categorical and limited dependent variables. Sage. pp 104–106.Google Scholar
  31. Lorrilliere R, Couvet D, Robert A (2012) The effects of direct and indirect constraints on biological communities. Ecological Modelling 224: 103–110. DOI: 10.1016/j.ecolmodel.2011.10.015CrossRefGoogle Scholar
  32. Mitov PG, Stoyanov IL (2005) Ecological profiles of harvestmen (Arachnida, Opiliones) from Vitosha Mountain (Bulgaria): A mixed modelling approach using GAMS. Journal of Arachnology 33: 256–268. DOI: 10.1636/05-21.1CrossRefGoogle Scholar
  33. Moen A (1998) Nasjonalatlas for Norge: Vegetasjon. Statens Kartverk, Hønefoss. p. 199.Google Scholar
  34. Mustin K, Sutherland WJ, Gill JA (2007) The complexity of predicting climate induced ecological impacts. Climate Research 35: 165–175. DOI: 10.3354/cr00723CrossRefGoogle Scholar
  35. Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford. p. 392.Google Scholar
  36. Naujok J, Finch OD (2004) Communities and spatio-temporal patterns of epigeic beetles (Coleoptera) in high mountain habitats of the Central Norwegian Scandes, with special emphasis on carabid beetles (Carabidae). Norwegian Journal of Entomology 51: 31–55.Google Scholar
  37. Osses F, Nazareth TM, Machado G (2008) Activity pattern of the Neotropical harvestman Neosadocus maximus (Opiliones, Gonyleptidae): sexual and temporal variations: Journal of Arachnology 36: 518–526. DOI: 10.1636/St06-48.1CrossRefGoogle Scholar
  38. Pape R, Wundram D, Löffler J (2009) Modelling near-surface temperature conditions in high mountain environments — An appraisal. Climate Research 39: 99–109. DOI: 10.3354/cr00795CrossRefGoogle Scholar
  39. Pinto-da-Rocha R, Machado M, Giribet G (2007) Harvestmen: The Biology of Opiliones. Harvard University Press, Cambridge, Massachusetts, USA. p. 597.Google Scholar
  40. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.R-project.org/ (Accessed on 26 April 2013)Google Scholar
  41. Rial JA, Pielke RA, Beniston M et al. (2004) Nonlinearities, feedbacks and critical thresholds within the earth’s climate system. Climatic Change 65: 11–38. DOI: 10.1023/B:CLIM. 0000037493.89489.3fCrossRefGoogle Scholar
  42. Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike Information Criterion Statistics. D. Reidel Publishing Company, Dordrecht, The Netherlands.Google Scholar
  43. Scherrer SC, Ceppi P, Croci-Maspoli M, et al. (2012) Snowalbedo feedback and Swiss spring temperature trends. Theoretical and Applied Climatology 110: 509–516. DOI: 10.1007/s00704-012-0712-0CrossRefGoogle Scholar
  44. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38: 406–416. DOI: 10.1111/j.1365-2699.2010.02407.xCrossRefGoogle Scholar
  45. Schlick-Steiner BC, Steiner FM, Seifert B, et al. (2010) Integrative Taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55: 421–438. DOI: 10.1146/annurev-ento-112408-085432CrossRefGoogle Scholar
  46. Selås V, Sonerud GA, Framstad E, et al. (2011) Climate change in Norway: warm summers limit grouse reproduction. Population Ecology 53: 361–371. DOI: 10.1007/s10144-010-0255-0CrossRefGoogle Scholar
  47. Slagsvold T (1976) The phenology of Mitopus morio (Fabr.) (Opiliones) in Norway. Norwegian Journal of Entomology 23: 7–16.Google Scholar
  48. Sonntag D (1990) Important new values of the physical constants of 1986, vapour pressure formulations based on ITS-90, and psychrometer formulae. Zeitschrift für Meteorologie 70: 340–344.Google Scholar
  49. Stol I (1999) Norske og nordiske langbeinarter (Opiliones). Norske Insekttabeller (Oslo) 16: 1–16.Google Scholar
  50. Stol I (2003) Distribution and ecology of harvestmen (Opiliones) in the Nordic countries. Norwegian Journal of Entomology 50: 33–41.Google Scholar
  51. Stol I (2009) Opiliones faunaen på Nord-Vestlandet. Insekt-Nytt 34: 18–24.Google Scholar
  52. Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315: 640–642. DOI: 10.1126/science.1136401CrossRefGoogle Scholar
  53. Thomas CD, Cameron A, Green RE, et al. (2004) Extinction risk from climate change. Nature 427: 145–148. DOI: 10.1038/nature02121CrossRefGoogle Scholar
  54. Thomas CD (2010) Climate, climate change and range boundaries. Diversity and Distributions 16: 488–495. DOI: 10.1111/j.1472-4642.2010.00642.xCrossRefGoogle Scholar
  55. Todd V (1949) The habits and ecology of the British harvestmen (Arachnida, Opiliones), with special reference to those of the Oxford District. Journal of Animal Ecology 18: 209–229. DOI: 10.2307/1600CrossRefGoogle Scholar
  56. Venables, WN, Ripley BD (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York, USA.Google Scholar
  57. Vuong, QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57: 307–333. DOI: 10.2307/1912557CrossRefGoogle Scholar
  58. Williams G (1962) Seasonal and diurnal activity of harvestmen (Phalangida) and spiders (Araneida) in contrasted habitats. Journal of Animal Ecology 31: 23–42. DOI: 10.2307/2330CrossRefGoogle Scholar
  59. Willmer P (1991) Thermal biology and mate acquisition in ectotherms. Trends in Ecology and Evolution 6: 396–399. DOI: 10.1016/0169-5347(91)90161-PCrossRefGoogle Scholar
  60. Willmer P, Stone G, Johnston I (2004) Environmental physiology of animals. Wiley-Blackwell. Oxford. p. 768.Google Scholar
  61. Wookey PA, Aerts R, Bardgett RD, et al. (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of arctic and alpine ecosystems to environmental change. Global Change Biology 15: 1153–1172. DOI: 10.1111/j.1365-2486.2008.01801.xCrossRefGoogle Scholar
  62. Wundram D, Pape R, Löffler J (2010) Alpine soil temperature variability at multiple scales. Arctic, Antarctic, and Alpine Research 42: 117–128. DOI: 10.1657/1938-4246-42.1.117CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nils Hein
    • 1
    Email author
  • Roland Pape
    • 1
  • Oliver-D. Finch
    • 2
  • Jörg Löffler
    • 1
  1. 1.Department of GeographyUniversity of BonnBonnGermany
  2. 2.RastedeGermany

Personalised recommendations