Advertisement

Journal of Mountain Science

, Volume 12, Issue 2, pp 446–455 | Cite as

High phenotypic variation in Morus alba L. along an altitudinal gradient in the Indian trans-Himalaya

  • Prabodh K. Bajpai
  • Ashish R. Warghat
  • Ashish Yadav
  • Anil Kant
  • Ravi B. Srivastava
  • Tsering StobdanEmail author
Article

Abstract

Ten quantitative morphological characters were studied in 56 Morus alba L. trees representing three natural populations from the trans-Himalayan Ladakh region. The altitude of collection sites ranged from 2815 to 3177 m above the sea level (asl). Coefficient of variation (CV) showed high phenotypic variation in M. alba. Linear regression analysis revealed that leaf and fruit size decreases with an increase in altitude. High CV was observed for leaf length, leaf width, petiole length, leaf area, inter-nodal distance, number of nodes, bud length, fruit length, fruit width and fruit weight. Similarly, a high phenotypic plasticity index was observed for bud length, leaf length, leaf width, petiole length, leaf area, inter-nodal distance, number of nodes, fruit length, fruit width and fruit weight. For every 100 m increase in altitude, leaf length, leaf width and leaf area decreased by 1 cm, 0.8 cm and 16.6 cm2, respectively. Analysis of covariance showed a predominant altitudinal effect on the morphological characters in comparison to the population effect. A small change in the altitude caused significant change in the plant morphological characteristics. The present investigation represents to our knowledge the first study addressing phenotypic variation in mulberry along an altitudinal gradient.

Keywords

Adaptation Ladakh Leaf Morphometry Mulberry Morus alba Stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awasthi AK, Nagaraju GM, Naik GV, et al. (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genetics 5: 1. DOI: 10.1186/1471-2156-5-1CrossRefGoogle Scholar
  2. Bajpai PK, Warghat AR, Sharma AR, et al. (2014) Structure and genetic diversity of natural populations of Morus alba L. in the trans-Himalaya Ladakh region. Biochemical Genetics 52: 137–152. DOI: 10.1007/s10528-013-9634-5CrossRefGoogle Scholar
  3. Banerjee R, Rowchowdhuri S, Sau H, et al. (2007) Genetic diversity and interrelationship among mulberry genotypes. Journal of Genetics & Genomics 34(8): 691–697. DOI: 10.1016/S1673-8527(07)60078-2CrossRefGoogle Scholar
  4. Beaulieu J, Perron M, Bousquet J (2004) Multivariate patterns of adaptive genetic variation and seed source transfer in Picea mariana. Canadian Journal of Forest Research 34(3): 531–545. DOI: 10.1139/x03-224CrossRefGoogle Scholar
  5. Balaguer L, Martínez-Ferri E, Valladares F, et al. (2001) Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology 15: 124–135. DOI: 10.1046/j.1365-2435.2001.00505.xCrossRefGoogle Scholar
  6. Burgess KS, Deverno L, Husband BC, Morgan M (2005) Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Molecular Ecology 14: 3471–3483. DOI: 10.1111/j.1365-294X.2005.02670.xCrossRefGoogle Scholar
  7. Calagari M, Modirrahmati AR, Asadi F (2006) Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture and Biology 8(6): 754–758. DOI: 10.4236/oje.2013.34033.Google Scholar
  8. Callaway R, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84: 115–1128. DOI: 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2Google Scholar
  9. Chalcoff VR, Ezcurra C, Aizen MA (2008) Uncoupled geographical variation between leaves and flowers in a south Andean Proteaceae. Annals of Botany 102: 79–91. DOI: 10.1093/aob/mcn057CrossRefGoogle Scholar
  10. Chen RF, Xu L, Yu MD, et al. (2010) Determination of the origin and evolution of Morus (Moraceae) by analyzing the internal transcribed spacer (ITS) sequences. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China. pp 1–5. DOI: 10.1109/ICBBE.2010.5518058Google Scholar
  11. Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek PM (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: role of phenotypic plasticity. Oecologia 113: 188–196. DOI: 10.1007/s004420050367CrossRefGoogle Scholar
  12. Debat V, David P (2001) Mapping phenotypes: canalization, plasticity and developmental stability. Trends in Ecology and Evolution 16(10): 555–561. DOI: 10.1016/S0169-5347(01)02266-2CrossRefGoogle Scholar
  13. Fishler M, Goldschmidt EE, Monselise SP (1983) Leaf area and fruit size in girdled grapefruit branches. Journal of the Americal Society for Horticultural Science 108: 218–221.Google Scholar
  14. Goldstein G, Rada F, Azocar A (1985) Cold hardiness and supercooling along an altitudinal gradient in Andean giant rosette species. Oecologia 68: 147–152. DOI: 10.1007/BF00379487CrossRefGoogle Scholar
  15. Gray E (1990) Evidence of phenotypic plasticity in mulberry (Morus L.). Castanea 55(4): 272–281.Google Scholar
  16. Gratani L, Meneghini M, Pesoli P, Crescente MF (2003) Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. Oecologia 17: 515–521.Google Scholar
  17. Halloy SRP, Mark AF (1996) Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand 26: 41–78. DOI: 10.1080/03014223.1996.9517504CrossRefGoogle Scholar
  18. Havström M, Callaghan TV, Jonasson S, Svoboda J (1995) Little ice age temperature estimated by growth and flowering differences between sub fossil and extant shoots of Cassiope tetragona, an arctic heather. Functional Ecology 9: 650–654.CrossRefGoogle Scholar
  19. Hovenden MJ, Vander Schoor JK (2003) Nature vs nurture in the leaf morphology of South western beech, Nothofagus cunnighamii (Nothofagaceae). New Phytologist 161: 584–594. DOI: 10.1046/j.1469-8137.2003.00931.xGoogle Scholar
  20. Jump AS, Matyas C, Penuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology and Evolution 24(12): 694–701. DOI: 10.1016/j.tree.2009.06.007CrossRefGoogle Scholar
  21. Kafkas S, Özgen M, Doğan Y et al. (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. Journal of the American Society for Horticultural Science 133(4): 593–597.Google Scholar
  22. Kleinschmit J (1993) Intraspecific variation of growth and adaptive traits in European oak species. Annals of Forest Science 50: 166–185. DOI: 10.1051/forest:19930716CrossRefGoogle Scholar
  23. Korekar G, Dwivedi SK, Singh H, et al. (2013) Germination of Hippophae rhamnoides L. seed after 10 years of storage at ambient condition in cold arid trans-Himalayan Ladakh region. Current Science 104(1): 110–114.Google Scholar
  24. Körner C (1989) The nutritional status of plants from high altitudes. Oecologia 81: 379–391. DOI: 10.1007/BF00377088CrossRefGoogle Scholar
  25. Körner C (2007) The use of altitude in ecological research. Trends in Ecology and Evolution 22(11): 569–574. DOI: 10.1016/j.tree.2007.09.006CrossRefGoogle Scholar
  26. Ligaretto GA, Pilar Patino MD, Magnitskiy SV (2011) Phenotypic plasticity of Vaccinium meridionale (Ericaceae) in wild populations of mountain forests in Colombia. Revista de Biologia Tropical 59(2): 569–583.Google Scholar
  27. Magnani F, Borghetti M (1995) Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant Cell & Environment 18: 689–696. DOI: 10.1111/j.1365-3040.1995.tb00570.xCrossRefGoogle Scholar
  28. Meinzer FC, Goldstein GH, Rundel PW (1985) Morphological changes along an altitudinal gradient and their consequences for an Andean giant rosette plant. Oecologia 65: 278–283. DOI: 10.1007/BF00379230CrossRefGoogle Scholar
  29. Potvin C, Tousignant D (1996) Evolutionary consequences of simulated global change: genetic adaptation or adaptive phenotypic plasticity. Oecologia 108: 683–693. DOI: 10.1007/BF00329043CrossRefGoogle Scholar
  30. Rehfeldt GE, Wykoff WR, Ying CC (2001) Physiologic plasticity, evolution and impacts of a changing climate on Pinus contorta. Climatic Change 50: 355–376. DOI: 10.1023/A:1010614216256CrossRefGoogle Scholar
  31. Roblek M, Germ M, Sedej TT, Gaberscik A (2008) Morphological and biochemical variations in St John’s wort, Hypericum perforatum L., growing over altitudinal and UV-B radiation gradients. Periodicum Biologorum 110(3): 257–262.Google Scholar
  32. Sattarian A, Akbarian MR, Zarafshar M, Bruschi P, Fayaz P (2011) Phenotypic variation and leaf fluctuating asymmetry in natural populations of Parrotica persica (Hamamelidaceae), an endemic species from the Hyrcanian forest (Iran). Acta Botanica Mexicana 97: 65–81.Google Scholar
  33. Stenström A, J’onsd’ottir AS (1997) Responses of the clonal sedge, Carex bigelowii, to two seasons of simulated climate change. Global Change Biology 3: 89–96. DOI: 10.1111/j.1365-2486.1997.gcb134.xCrossRefGoogle Scholar
  34. Stenström A, J’nsd’ttir IS, Augner M (2002) Genetic and environmental effects on morphology in clonal sedges in the Eurasian Arctic. American Journal of Botany 89(9): 1410–1421. DOI: 10.3732/ajb.89.9.1410CrossRefGoogle Scholar
  35. Sultan SE, Bazzaz FA (1993) Phenotypic plasticity in Polygonum persicaria III. The evolution of ecological breadth for nutrient environment. Evolution 47: 1050–1071.CrossRefGoogle Scholar
  36. Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica 44: 363–383. DOI: 10.1111/j.1438-8677.1995.tb00793.xCrossRefGoogle Scholar
  37. Valladares F, Arrieta S, Aranda I, et al. (2005) Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites. Tree Physiology 25: 1041–1052. DOI: 10.1093/treephys/25.8.1041CrossRefGoogle Scholar
  38. Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94: 1103–1116. DOI: 10.1111/j.1365-2745.2006.01176.xCrossRefGoogle Scholar
  39. Weiner J (2004) Allocation, plasticity and allometry in plants. Perspective in Plant Ecology, Evolution and Systematics 6(4): 207–215. DOI: 10.1078/1433-8319-00083CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Prabodh K. Bajpai
    • 1
  • Ashish R. Warghat
    • 1
  • Ashish Yadav
    • 1
  • Anil Kant
    • 2
  • Ravi B. Srivastava
    • 1
  • Tsering Stobdan
    • 1
    Email author
  1. 1.Defence Institute of High Altitude ResearchDRDOLehIndia
  2. 2.Jaypee University of Information TechnologyWaknaghat, SolanIndia

Personalised recommendations