Advertisement

Journal of Mountain Science

, Volume 11, Issue 3, pp 578–591 | Cite as

Volume estimation of small scale debris flows based on observations of topographic changes using airborne LiDAR DEMs

  • Hosung Kim
  • Seung Woo Lee
  • Chan-Young Yune
  • Gihong KimEmail author
Article

Abstract

This paper describes a geographic information system (GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using high-resolution light detection and ranging (LiDAR) digital elevation models (DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system (GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.

Keywords

Debris flow Topographic change LiDAR DEM Volume estimation Global navigation satellite system (GNSS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann F (1999) Airborne laser scanning — present status and future expectations. ISPRS Journal of Photogrammetry and Remote Sensing 54(2–3): 64–67. DOI: 10.1016/S0924-2716(99)00009-XCrossRefGoogle Scholar
  2. Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90(1–2): 144–161. DOI: 10.1016/j.geomorph.2007.01.014CrossRefGoogle Scholar
  3. Brasington J, Langham J, Rumsby B (2003) Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53: 299–316. DOI: 10.1016/S0169-555X(02)00320-3CrossRefGoogle Scholar
  4. Bremer M, Sass O (2012) Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow events. Geomorphology 138: 49–60. DOI: 10.1016/j.geomorph.2011.08.024CrossRefGoogle Scholar
  5. Bull JM, Miller H, Gravley DM, et al. (2010) Assessing debris flow using LiDAR differencing: 18 May 2005 Matata event, New Zealand. Geomorphology 124(1–2):75–84. DOI: 10.1016/j.geomorph.2010.08.011CrossRefGoogle Scholar
  6. Carrara A, Guzzetti F (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards 20(2–3): 117–135. DOI: 10.1023/A:1008097111310CrossRefGoogle Scholar
  7. Cavalli M, Tarolli P, Marchi L, et al. (2008) The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena 73(3): 249–260. DOI: 10.1016/j.catena.2007.11.001CrossRefGoogle Scholar
  8. Chandler J (1999) Effective application of automated digital photogrammetry for geomorphological research. Earth Surface Processes and Landforms 24(1): 51–63. DOI: 10.1002/(SICI)1096-9837(199901)24:1〈51::AID-ESP948〉3.0.CO;2-HCrossRefGoogle Scholar
  9. Clark ML, Clark DB, Roberts DA (2004) Small-footprint LiDAR estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment 91(1): 68–89. DOI: 10.1016/j.rse.2004.02.008CrossRefGoogle Scholar
  10. Conoscenti C, Maggio CD, Rotigliano E (2008) GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94(3–4): 325–339. DOI: 10.1016/j.geomorph.2006.10.039CrossRefGoogle Scholar
  11. Crosta GB, Cucchiaro S, Frattini P (2003) Validation of semiempirical relationships for the definition of debris-flow behaviour in granular materials. Proceedings of 3rd International Conference on Debris Flows Hazards Mitigation: Mechanics, Prediction and Assessment, Millpress, Rotterdam. pp.821–831.Google Scholar
  12. Dai FC, Lee CF, Li J, et al. (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology 40(3): 381–391. DOI: 10.1007/s002540000163CrossRefGoogle Scholar
  13. DeLong SB, Prentice CS, Hilley GE, et al. (2012) Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow. Earth Surface Process and Landforms 37(3): 262–272. DOI: 10.1002/esp.2234CrossRefGoogle Scholar
  14. Du JC, Teng HC (2007) 3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction 16(5): 657–663. DOI: 10.1016/j.autcon.2006.11.002CrossRefGoogle Scholar
  15. Gartner JE, Cannon SH, Santi PM, et al. (2008) Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S. Geomorphology 96(3–4): 339–354. DOI: 10.1016/j.geomorph.2007.02.033CrossRefGoogle Scholar
  16. Griswold JP (2004) Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Master thesis, Portland State University, USA.Google Scholar
  17. Han JH, Kwon JH, Hong CK (2010) Analysis of network-RTK(VRS) positioning accuracy for surveying public control point. Journal of the Korean Society for Geospatial Information System 18(2): 13–20. (In Korean)Google Scholar
  18. Hooper DM, Bursik MI, Webb FH (2003) Application of highresolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada — California, USA. Remote Sensing of Environment 84(2): 255–267. DOI: 10.1016/S0034-4257(02)00110-4CrossRefGoogle Scholar
  19. Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. Journal of Fluid Mechanics 374(1): 305–333. DOI: 10.1017/S0022112098002845CrossRefGoogle Scholar
  20. Hunt B (1994) Newtonian fluid mechanics treatment of debris flows and avalanches. Journal of Hydraulic Engineering, ASCE 120(12): 1350–1363. DOI: 10.1016/0148-9062(95)97151-8CrossRefGoogle Scholar
  21. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geotechnical Society of America Bulletin 110(8): 972–984. DOI: 10.1130/0016-7606CrossRefGoogle Scholar
  22. Jaboyedoff M, Oppikofer T, Abellan A, et al. (2012) Use of LiDAR in landslide investigations: a review. Natural Hazards 61: 5–28. DOI: 10.1007/s11069-010-9634-2CrossRefGoogle Scholar
  23. Kim HI, Yu GS, Park, KD, et al. (2008) Accuracy evaluation of VRS RTK surveys inside the GPS CORS network operated by National Geographic Information Institute. Journal of Korean Society of Surveying Geodesy Photogrammetry and Cartography 26(2): 139–147. (In Korean)Google Scholar
  24. Korea Meteorological Administration (2010) 2010 abnormal climate special report. 11-1360000-000705-01. (In Korean)Google Scholar
  25. Korean Geotechnical Society (2011) Umyeon mountain landslide investigation and restoration countermeasure establishment report. KSG11-250. (In Korean)Google Scholar
  26. Lee S. (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surface Processes and Landforms 32(14): 2133–2148. DOI: 10.1002/esp.1517CrossRefGoogle Scholar
  27. Lee SW, Kim G, Yune CY, et al. (2013) Development of landslide-risk assessment model for mountainous regions in eastern Korea. Disaster Advances 6(6): 70–79.Google Scholar
  28. Marchi L, D’Agostino V (2004) Estimation of debris-flow magnitude in the eastern Italian Alps, Earth Surface Processes and Landforms 29(2): 207–220. DOI: 10.1002/esp.1027CrossRefGoogle Scholar
  29. McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57(3–4): 331–351. DOI: 10.1016/S0169-555X(03)00164-8CrossRefGoogle Scholar
  30. Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using newmark’s method and stochastic ground motion simulation. Soil Dynamics and Earthquake Engineering 18(4): 305–323. DOI: 10.1016/S0267-7261(98)00048-7CrossRefGoogle Scholar
  31. Montane JM, Torres R (2006) Accuracy assessment of LiDAR saltmarsh topographic data using RTK GPS. Photogrammetric Engineering and Remote Sensing 72(8): 961–967.CrossRefGoogle Scholar
  32. Naef D, Rickenmann D, Rutschmann P, et al. (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Sciences 6(1): 155–165. DOI: 10.5194/nhess-6-155-2006CrossRefGoogle Scholar
  33. Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology 110(1–2): 11–20. DOI: 10.1016/j.enggeo.2009.10.001Google Scholar
  34. O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, ASCE 119(2): 244–261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)CrossRefGoogle Scholar
  35. Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology 69(3–4): 331–343. DOI: 10.1016/S0013-7952(03)00069-3CrossRefGoogle Scholar
  36. Quadros ND, Collier PA, Fraser CS (2008) Integration of bathymetric and topographic LiDAR: a preliminary investigation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36, Beijing, China. pp 1299–1304.Google Scholar
  37. Refice A, Capolongo D (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers & Geosciences 28(6): 735–749. DOI: 10.1016/S0098-3004(01)00104-2CrossRefGoogle Scholar
  38. Rickenmann D (1999) Empirical relationships for debris flows. Natural Hazards 19(1): 47–77. DOI: 10.1023/A:1008064220727CrossRefGoogle Scholar
  39. Rickenmann D, Laigle D, McArdell BW, et al. (2006) Comparison of 2D debris-flow simulation models with field events. Computational Geosciences 10(2): 241–264. DOI: 10.1007/s10596-005-9021-3CrossRefGoogle Scholar
  40. Scheidl C, Rickenmann D, Chiari M (2008) The use of airborne LiDAR data for the analysis of debris flow events in Switzerland. Natural Hazards and Earth System Sciences 8(5): 1113–1127. DOI: 10.5194/nhess-8-1113-2008CrossRefGoogle Scholar
  41. Trimble Navigation, Ltd. (2002) 5700/5800 GPS Receiver User Guide, Version1.0, Revision A, Trimble Navigation, Limited.Google Scholar
  42. Tsutsui K, Rokugawa S, Nakagawa H, et al. (2007) Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from highresolution satellite stereo imagery. IEEE Transactions on Geoscience and Remote Sensing 45(6): 1681–1696. DOI: 10.1109/TGRS.2007.895209CrossRefGoogle Scholar
  43. Wang C, Li S, Esaki T (2008) GIS-based two-dimensional numerical simulation of rainfall-induced debris flow. Natural Hazards and Earth System Sciences 8(1):47–58. DOI: 10.5194/nhess-8-47-2008CrossRefGoogle Scholar
  44. Wheaton JM, Brasington J, Darby SE, et al. (2010) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms 35(2): 136–156. DOI: 10.1002/esp.1886Google Scholar
  45. Yalcin A, Reis S, Aydinoglu AC et al. (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistic regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3): 274–287. DOI: 10.1016/j.catena.2011.01.014CrossRefGoogle Scholar
  46. Yune CY, Chae YK, Paik J, et al. (2013) Debris flow in metropolitan area — 2011 Seoul debris flow. Journal of Mountain Science 10(2): 199–206. DOI: 10.1007/s11629-013-2518-7CrossRefGoogle Scholar
  47. Zhou G, Esaki T, Mitani Y, et al. (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology 68(3–4): 373–386. DOI: 10.1016/S0013-7952(02)00241-7CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hosung Kim
    • 1
  • Seung Woo Lee
    • 1
  • Chan-Young Yune
    • 1
  • Gihong Kim
    • 1
    Email author
  1. 1.Department of Civil EngineeringGangneung-Wonju National UniversityGangneungSouth Korea

Personalised recommendations