Advertisement

Journal of Mountain Science

, Volume 11, Issue 5, pp 1298–1307 | Cite as

Two-sided long baseline radargrammetry from ascending-descending orbits with application to mapping post-seismic topography in the west Sichuan foreland basin

  • Hai-qin Cheng
  • Qiang ChenEmail author
  • Guo-xiang Liu
  • Ying-hui Yang
  • Li-yao Liu
Article
  • 135 Downloads

Abstract

One-sided ascending or descending Synthetic Aperture Radar (SAR) stereo-radargrammetry has limited accuracy of topographic mapping due to the short spatial baseline (∼100 km) and small intersection angle. In order to improve the performance and reliability of generating digital elevation model (DEM) from spaceborne SAR radargrammetry, an exploration of two-sided stereo-radargrammetry from the combination of ascending and descending orbits with geometric configuration of long spatial baseline (∼1000 km) was conducted in this study. The slant-range geometry between SAR sensors to the earth surface and the Doppler positioning equations were employed to establish the stereoscopic intersection model. The measurement uncertainty of two-sided radargrammetric elevation was estimated on the basis of radar parallax of homogeneous points between input SAR images. Two stereo-pairs of ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar) acquisitions with the orbital separation almost 1080 km over the west Sichuan foreland basin with rolling topography in southwestern China were employed in the study to obtain the up-to-date terrain data after the 2008 Wenchuan earthquake that hit this area. The quantitative accuracy assessment of two-sided radargrammetric DEM was performed with reference to field GPS observations. The experimental results show that the elevation accuracy reaches 5.5 m without ground control points (GCPs) used, and the accuracy is further improved to 1.5 m with only one GPS GCP used as the least constraint. The theoretical analysis and testing results demonstrate that the two-sided long baseline SAR radargrammetry from the ascending and descending orbits can be a very promising technical alternative for large-area and high accuracy topographic mapping.

Keywords

Ascending and descending orbits Twosided SAR radargrammetry Long baseline Image parallax Accuracy assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed R, Siqueira P, Hensley S, et al. (2011) A survey of temporal decorrelation from spaceborne L-Band repeat-pass InSAR. Remote Sensing of Environment 115(11): 2887–2896. DOI: 10.1016/j.rse.2010.03.017CrossRefGoogle Scholar
  2. Crosetto M (2002) Calibration and Validation of SAR Interferometry for DEM Generation. ISPRS Journal of Photogrammetry & Remote Sensing 57(3): 213–227. DOI: 10.1016/S0924-2716(02)00107-7.CrossRefGoogle Scholar
  3. Chen Q, Liu GX, Ding XL, et al. (2010) Tight integration of GPS observations and persistent scatterer InSAR for detecting vertical ground motion in Hong Kong. International Journal of Applied Earth Observation and Geoinformation 12(6): 477–486. DOI: 10.1016/j.jag.2010.05.002CrossRefGoogle Scholar
  4. Ferretti A, Prati C, Rocca F (1999) Multibaseline InSAR DEM reconstruction: The wavelet approach. IEEE Transactions on Geoscience & Remote Sensing 37(2): 705–715. DOI: 10.1109/36.752187.CrossRefGoogle Scholar
  5. Hugentobler U, Schaer S, Fridez P (2001) Bernese GPS software, version 4.2. Astronomical Institute, University of Berne. p 515.Google Scholar
  6. Kong YK, Cho BL, Kim YS (2005) Ambiguity-Free Doppler Centroid Estimation Technique for Airborne SAR Using the Radon Transform. IEEE Transactions on Geoscience and Remote Sensing 43(4): 715–721. DOI: 10.1109/TGRS. 2005.843955.CrossRefGoogle Scholar
  7. Krieger G, Moreira A, Fiedler H, et al. (2007) TanDEM-X: A Satellite Formation for High Resolution SAR Interferometry. IEEE Transactions on Geoscience & Remote Sensing 45(11): 3317–3341. DOI: 10.1109/TGRS.2007.900693.CrossRefGoogle Scholar
  8. Krieger G, Hajnsek I, Papathanassiou KP, et al. (2010) Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying. Proceedings of the IEEE 98(5): 816–843. DOI:10.1109/JPROC.2009.2038948.CrossRefGoogle Scholar
  9. Li ZL, Liu GX, Ding XL (2006) Exploring the Generation of Digital Elevation Models From Same-side ERS SAR Images: Topographic and Temporal Effects. Photogrammetric Record 10(113): 1–17. DOI: 10.1111/j.1477-9730.2006.00356.x.Google Scholar
  10. Liu GX, Li J, Xu Z, et al. (2010) Surface deformation associated with the 2008 Ms8.0 Wenchuan earthquake from ALOS Lband SAR interferometry. International Journal of Applied Earth Observation and Geoinformation 12: 496–505. DOI: 10.1016/j.jag.2010.05.005.CrossRefGoogle Scholar
  11. Massonnet D, Rabaute T (1993) Radar Interferometry: Limits and Potential. IEEE Transactions on Geoscience and Remote Sensing 31(2): 455–464. DOI:10.1109/36.214922.CrossRefGoogle Scholar
  12. Nahavandchi H (2002) Two different methods of geoidal height determinations using a spherical harmonic representation of the geopotential, topographic corrections and the height anomaly-geoidal height difference. Journal of Geodesy 76: 345–352. DOI:10.1007/s00190-002-0253-x.CrossRefGoogle Scholar
  13. Raggam H, Perko R, Gutjahr K (2009) Investigation of the Stereo-Radargrammetric Mapping Potential of TerraSAR-X. Proceeding of the 29th EARSeL Symposium, Chania, Greece: 371–380. DOI: 10.3233/978-1-60750-494-8-371.Google Scholar
  14. Raggam H, Gutjahr K, Perko R, et al. (2010) Assessment of the Stereo-Radargrammetric Mapping Potential of TerraSAR-X Multibeam Spotlight Data. IEEE Transactions on Geoscience and Remote Sensing 48(2): 971–977. DOI: 10.1109/TGRS. 2009.2037315.CrossRefGoogle Scholar
  15. Raucoules D, Ristori B, Michele MD, et al. (2010) Surface displacement of the Mw 7 Machaze earthquake (Mozambique): Complementary use of multiband InSAR and radar amplitude image correlation with elastic modeling, Remote Sensing of Environment 114(10): 2211–2218. DOI: 10.1016/j.rse.2010. 04.023.CrossRefGoogle Scholar
  16. Renga A, Moccia A (2009) Performance of Stereoradargrammetric Methods Applied to Spaceborne Monostatic-Bistatic Synthetic Aperture Radar. IEEE Transactions on Geoscience and Remote Sensing 41(2): 544–560. DOI:10.1109/TGRS.2008.2003184.CrossRefGoogle Scholar
  17. Sansosti E (2004) A simple and exact solution for the interferometric and stereo SAR geolocation problem. IEEE transactions on Geoscience and Remote Sensing 42(8): 1625–1634. DOI:10.1109/TGRS.2004.831442.CrossRefGoogle Scholar
  18. Schanda E (1985) A radargrammetry experiment in a mountain region. International Journal of Remote Sensing 6(7): 1113–1124. DOI: 10.1080/01431168508948266.CrossRefGoogle Scholar
  19. Li WL, Huang RQ, Tang C, et al. (2013) Co-seismic landslide inventory and susceptibility mapping in the 2008 Wenchuan earthquake disaster area, China. Journal of Mountain Science 10(3): 339–354. DOI: 10.1007/s11629-013-2471-5.CrossRefGoogle Scholar
  20. Toutin T (1996) Opposite side ERS-1 SAR Stereo Mapping over Rolling Topography. IEEE Transactions on Geoscience and Remote Sensing 34(2): 543–549. DOI: 10.1109/36.485130.CrossRefGoogle Scholar
  21. Toutin T, Gray L (2000) State-of-the-art Elevation Extraction from Satellite SAR Data. ISPRS Journal of Photogrammetry and Remote Sensing 55(1): 13–33. DOI: 10.1016/S0924-2716(99)00039-8.CrossRefGoogle Scholar
  22. Toutin T (2002) Impact of Terrain Slope and Aspect on Radargrammetric DEM Accuracy. ISPRS Journal of Photogrammetry & Remote Sensing 38(2): 782–789. DOI: 10.1016/S0924-2716(02)00123-5.Google Scholar
  23. Yan ZX, Ma GZ, Yuan BX, et al. (2012) The Origin of the 2008 Wenchuan Earthquake Determined by the Analysis on the Active Longmenshan Nappe in Terms of Rockmass Mechanics. Journal of Mountain Science 9: 395–402. DOI: 10.1007/s11629-009-2256-z.CrossRefGoogle Scholar
  24. Yu JH, Li XJ, Ge LL (2011) Radargrammetric DEM generation using ENVISAT simulation image and reprocessed image. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS2011). DOI: 10.1109/IGARSS.2011.6049842: 2980-2983.Google Scholar
  25. Zebker HA, Goldstein RM (1986) Topographic Mapping from Interferometric SAR Observations. Journal of Geophysical Research 91(5): 4993–4999. DOI: 10.1029/JB091iB05p04993.CrossRefGoogle Scholar
  26. Zhang L, Ding XL, Lu Z (2011) Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS Journal of Photogrammetry and Remote Sensing 66: 146–152. DOI: 10.1016/j.isprsjprs.2010.10.004.CrossRefGoogle Scholar
  27. Zhao CY, Lu Z, Zhang Q, et al. (2012) Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sensing of Environment 124: 348–359. DOI: 10.1029/2002JB002267.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hai-qin Cheng
    • 1
    • 2
  • Qiang Chen
    • 1
    Email author
  • Guo-xiang Liu
    • 1
  • Ying-hui Yang
    • 1
  • Li-yao Liu
    • 1
  1. 1.Department of Remote Sensing and Geoinformation EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.School of Civil Engineering and ArchitectureEast China Jiaotong UniversityNanchangChina

Personalised recommendations