Advertisement

Journal of Mountain Science

, Volume 11, Issue 1, pp 236–287 | Cite as

The glacial (MIS 3-2) outlet glacier of the Marsyandi Nadi-icestream-network with its Ngadi Khola tributary glacier (Manaslu- and Lamjung Himalaya): The reconstructed lowering of the Marsyandi Nadi ice stream tongue down in to the southern Himalaya Foreland

Article

Abstract

For the reconstruction of past climate variations, investigations on the history of glaciers are necessary. In the Himalaya, investigations like these have a rather short tradition in comparison with other mountains on earth. At the same time, this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development. Anyhow, the climate of High Asia is of global importance. Here for the further and regionally intensifying answer to this question, a glacial glacier reconstruction is submitted from the Central-Himalaya, more exactly from the Manaslu-massif. Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola (Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995, 2000, 2004 and 2007, new geomorphological and geological field- and laboratory data are introduced here from the Ngadi (Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi (Nadi) Khola down to the southern mountain foreland. There has existed a connected ice-stream-network drained down to the south by a 2,100–2,200 m thick and 120 km long Marsyandi Nadi main valley glacier. At a height of the valley bottom of c. 1,000 m a.s.l. the Ngadi Khola glacier joined the still c. 1,300 m thick Marsyandi parent glacier from the Himalchuli-massif (Nadi (Ngadi) Chuli) — the south spur of the Manaslu Himal. From here the united glacier tongue flowed down about a further 44 km to the south up to c. 400 m a.s.l. (27°57′38″N/84°24′56″E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas. The glacial (LGP (Last glacial period), LGM (Last glacial maximum) Würm, Stage 0, MIS 3-2) climatic snowline (ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l. and thus c. 1,500 altitude meters below the current ELA (Stage XII) at 5,400–5,500 m a.s.l. The reconstructed, maximum lowering of the climatic snowline (ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C (0.6 × 15 = 9). At that time the Tibetan inland ice has caused a stable cold high, so that no summer monsoon can have existed there. Accordingly, during the LGP the precipitation was reduced, so that the cooling must have come to more than only 9°C.

Keywords

Ice Age Glaciation Himalaya Manaslu Ngadi Khola Icestream network Last Glacial period 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balco G (2011) Contributionsand unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quaternary Science Reviews. 30. pp 3–27.CrossRefGoogle Scholar
  2. Bertolotti M (2013) Celestial Messengers-Cosmic Rays: The Story of a Scientific Adventure. Springer Verlag, Berlin/Heidelberg, Germany. pp 1–400.Google Scholar
  3. Cain JC (1987) The Earth as a magnet. In: Akasofu S.-I, Kamide, Y (Eds.), The Solar Wind and the Earth, Tokyo, Japan, pp 55–69.CrossRefGoogle Scholar
  4. Chevalier M-L, Hilley G, et al. (2011) Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces. Quaternary Science Reviews 30: 528–554.CrossRefGoogle Scholar
  5. Dreimanis A, Vagners UJ (1971) Bimodal distribution of rock and mineral fragments in basal tills. In: Goldthwaite RP (ed.), Till. pp 237–250.Google Scholar
  6. Dunai TJ (2010) Cosmogenic Nuclides-Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, Cambridge, UK. pp 1–198.CrossRefGoogle Scholar
  7. Engelhardt Wv (1973) Die Bildung von Sedimenten und Sedimentgesteinen. In: Engelhardt Wv, Füchtbauer H, Müller G (Eds.), Sediment-Petrologie. III: 1–378 (In german).Google Scholar
  8. Flint RF (1971) Glacial and Quaternary Geology: 1–892.Google Scholar
  9. Fort M (1986) Glacial extension and catastophic dynamics along the Annapurna front, Nepal Himalaya. In: Internationalen Symposium über Tibet und Hochasien (8.–11. Oktober 1985), Geographical Institute at the University of Göttingen, Geographical Journal of Göttingen, (original title: Göttinger Geographische Abhandlungen). Vol. 81. (ed: Kuhle M) (48) Göttingen: 105–125.Google Scholar
  10. Gosse JC, Phillips FM (2001) Terrestrial in situcosmogenic nuclides: theory and application. Quaternary Science Review 20: 1475–1560.CrossRefGoogle Scholar
  11. Granger DE Muzikar PF (2001) Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth and Planetary Science Letters 188: 269–281.CrossRefGoogle Scholar
  12. Groom DE, Mokhov NV, Striganov SI (2001) Muon stopping power and range tables 10 MeV-100 TeV. Atomic Data and Nuclear Data Tables 78: 183–356.CrossRefGoogle Scholar
  13. Hagen T (1968) Report on the Geological Survey of Nepal. Volume 2: Geology of the Thakkhola including adjacent areas. — Publication of the Suiss Society of Natural Science (original title: Denkschrift Schweizerische Naturforschende Gesellschaft) 86(2): 1–160.Google Scholar
  14. Heimsath AM (2006) Eroding the land: Steady-state and stochastic rates and processes through a cosmogenic lens. In: Siame LL, Bourlès DL, Brown ET (Eds.), In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes. Geological Society of America Special Paper 415. pp 111–129.CrossRefGoogle Scholar
  15. Heyman, J, Stroeven AP et al. (2010) Boulder cosmogenic exposure ages as constraints for glacial chronologies. In: Palaeoglaciology of the northeastern Tibetan Plateau. Dissertations from the Department of Physical Geography and Quaternary Geology No 21, Stockholm University, Sweden. pp 1–15.Google Scholar
  16. Ivy-Ochs S, Kober F (2008) Surface exposure dating with cosmogenic nuclides. Quaternary Science Journal 57: 179–209.Google Scholar
  17. Iwata S (1984) Geomorphology of the Thakkhola-Muktinath region, Central Nepal, and its late quaternary history. Geographical Reports of Tokyo Metropolitan University 19: 25–42.Google Scholar
  18. Jacobsen JP (1990) The history of former glaciation in the Manaslu Himalaya and its climatic implications, (original title: Die Vergletscherungsgeschichte des Manaslu Himalaya’s und ihre klimatische Ausdeutung). Journal Geo actuel research contributions (original title: Geo Aktuell Forschungsarbeiten) 1: 1–82.Google Scholar
  19. Klebelsberg, Rv (1948/49) Textbook of Glaciology (original title: Handbuch der Gletscherkunde und Glazialgeologie). 1 & 2. Springer Wien: 1–1028.Google Scholar
  20. Klein J, Gosse J (1996) Terrestrial factors that influence production rates. Radiocarbon 38(1): 161–162.Google Scholar
  21. Köhn M (1928) Remarks on mechanical soil analysis III (original title: Bemerkungen zur mechanischen Bodenanalyse III. Ein neuer Pipettapparat. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, A 11: 50–54.CrossRefGoogle Scholar
  22. Kuhle M (1974) Preliminary results on morphological field research in the SE Iranian high mountains: example Kuh-i-Jupar (original title: Vorläufige Ausführungen morphologischer Feldarbeitsergebnisse aus den SE-Iranischen Hochgebirgen am Beispiel des Kuh-i-Jupar). Journal on Geomorphology (original title: Zeitschr. f. Geomorph. N.F.) 18(4): 472–483.Google Scholar
  23. Kuhle M (1980) Climageomorphological researches in the Dhaulagiri and Annapurna range (Central-Himalaya) (original title: Klimageomorphologische Untersuchungen in der Dhaulagiri und Annapurna-Gruppe (Zentraler Himalaya)). In proceedings of the 42. German Geographical Congress (original title: In Tagungsbericht und wissenschaftliche Abhandlungen des 42. Deutschen Geographentag Göttingen), 244–247.Google Scholar
  24. Kuhle M (1982) The Dhaulagiri and Annapurna Himalaya. A contribution on geomorphology in extreme high mountain areas (original title: Der Dhaulagiri- und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge). Journal on Geomorphology (original title: Zeitschr. f. Geomorph.) Suppl. 41: Vol. I (Text) 1–229, Vol. II (Abb.) 1–183, geomorphological map (original title: Geomorph. Karte) 1:85 000.Google Scholar
  25. Kuhle M (1983) The Dhaulagiri and Annapurna Himalaya. A contribution on geomorphology in extreme high mountain areas. Empirical base (original title: Der Dhaulagiri- und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Empirische Grundlage) Additonal volume III (original title: Ergänzungsbd. III.) Journal on Geomorphology (original title: Zeitschr. f. Geomorph. Suppl.) 41: 1–383.Google Scholar
  26. Kuhle M (1987) Subtropical Mountain- and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. GeoJournal 14(4): 393–421.CrossRefGoogle Scholar
  27. Kuhle M. (1988a) The pleistocene glaciation of Tibet and the onset of ice ages-An autocycle hypothesis. GeoJournal 17(4): 581–596.Google Scholar
  28. Kuhle M, Wang WJ (1988) Tibet and High Asia (I), Results of the Sino-German Joint Expeditions. Geojournal 17(4): 581–596.Google Scholar
  29. Kuhle M.(1988b) Geomorphological Findings on the Build-up of Pleistocene Glaciation in Southern Tibet, and on the Problem of Inland Ice. Results of the Shisha Pangma and Mt. Everest Expedition 1984. In: Kuhle M, Wang WJ (eds.), Tibet and High Asia (I), Results of the Sino-German Joint Expeditions). GeoJournal 17(4): 457–513.Google Scholar
  30. Kuhle M (1989) The inland glaciation (ice sheet) on Tibet as a fundament of a relief specific theory on ice age development, caused by the geometry of the global radiation (original title: Die Inlandvereisung Tibets als Basis einer in der Globalstrahlungsgeometrie fußenden, reliefspezifischen Eiszeittheorie). Geographical Journal of Petermann (original title: Petermanns Geographische Mitteilungen). 133(4): 265–285.Google Scholar
  31. Kuhle M (1990) The Probability of proof in geomorphology — an example of the application of information theory to a new kind of glacigenic morphological type, the ice-marginal ramp (Bortensander). GeoJournal 21(3): 195–222.CrossRefGoogle Scholar
  32. Kuhle M (1991a) Observations Supporting the Pleistocene Inland Glaciation of High Asia. In: Kuhle M, Xu DM (eds.), Tibet and High Asia (II), Results of the Sino-German Joint Expeditons. GeoJournal 25(2/3): 133–233.Google Scholar
  33. Kuhle M (1991b) Glaciogeomorphology (original title: Glazialgeomorphologie). Society of scientific books Darmstadt (original title: Wissenschaft. Buchgesell. Darmstadt): 1–213.Google Scholar
  34. Kuhle M (1997) New Findings concerning the Ice Age (Last Glacial Maximum) Glacier Cover of the East-Pamir, of the Nanga Parbat up to the Central Himalaya and of Tibet, as well as the Age of the Tibetan Inland Ice. In: Kuhle M (ed.), Tibet and High Asia (IV), Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene (Ice Age Research). GeoJournal 42(2–3): 87–257.Google Scholar
  35. Kuhle M (1998) Reconstruction of the 2.4 Million qkm Late Pleistocene Ice Sheet on the Tibetan Plateau and its Impact on the Global Climate. Quaternary International 45/46: 71–108 (Erratum: Vol. 47/48: 173–182 (1998) included).CrossRefGoogle Scholar
  36. Kuhle M (1999) Reconstruction of an approximately complete Quaternary Tibetan Inland Glaciation between the Mt. Everest- and Cho Oyu Massifs and the Aksai Chin. — A new glaciogeomorphological southeast-northwest diagonal profile through Tibet and its consequences for the glacial isostasy and Ice Age cycle. In: Kuhle M (Ed.), Tibet and High Asia (V), Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene. GeoJournal 47(1–2): 3–276.Google Scholar
  37. Kuhle M (2001a) The tibetan ice sheet, its impact on the palaeomonsoon and relation to the earth’s oribital variations. Polarforschung 71(1/2): 1–13.Google Scholar
  38. Kuhle M (2001b) Reconstruction of outlet glacier tongues of the ice age south-Tibetan ice cover between Cho Oyu and Shisha Pangma as a further proof of the Tibetan inland ice sheet. Polarforschung 71(3): 79–95.Google Scholar
  39. Kuhle M (2002a) Outlet glaciers of the Pleistocene (LGM) south Tibetian ice sheet between Cho Oyu and Shisha Pangma as potenial sources of former mega-floods. In: Martini P, Baker VR, Garzón G (eds.), Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. Special Publication of the International Association of Sedimentologists (IAS) 32. pp 291–302.CrossRefGoogle Scholar
  40. Kuhle M (2002b) A relief-specific model of the ice age on the basis of uplift-controlled glacier areas in Tibet and the corresponding albedo increase as well as their positiv climatological feedback by means of the global radiation geometry. Climate Research 20: 1–7.CrossRefGoogle Scholar
  41. Kuhle M (2004) The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia. In: Ehlers J, Gibbard PL (eds.), Development in Quaternary Science 2 (c, Quaternary Glaciation — Extent and Chronology, III: South America, Asia, Africa, Australia, Antarctica. Elsevier, The Netherlands. pp 175–199.Google Scholar
  42. Kuhle M (2006) Reconstruction of the ice age glaciation in the southern slopes of Mt. Everest, Cho Oyu, Lhotse and Makalu (Himalaya) (Part 1 & Part 2). Journal of Mountain Science 3/2: 91–124 & 3/3: 191–227.CrossRefGoogle Scholar
  43. Kuhle M (2007) Critical approach to the methods of glacier reconstruction in high Asia (Qinghai-Xizang (Tibet) Plateau, West Sichuan Plateau, Himalaya, Karakorum, Pamir, Kuenlun, Tienshan) and discussion of the probability of a Qinghai-Xizang (Tibetan) inland ice. Journal of Mountain Science 4/2: 91–123.CrossRefGoogle Scholar
  44. Kuhle M (2008) Correspondence to on-line-edition (DOI: 10.1016/j.quascirev. 2007.09.015 Elsevier) QSR-article “Quaternary glacier history of the Central Karakoram” by Seong YB, Owen LA, et al. Quaternary Science Reviews 27: 1655–1660.CrossRefGoogle Scholar
  45. Kuhle M (2010) New Indicators of a former Tibetan ice sheet and an ice stream network in the surrounding mountain systems: New observations and dating on the SE-, S- and Wmargin of Tibet from Expeditions in 2004–2009. Extended Abstracts 25th Himalaya-Karakoram-Tibet Workshop San Francisco: A104–A105.Google Scholar
  46. Kuhle M (2011a) The High Glacial (Last Ice Age and Last Glacial Maximum) Ice Cover of High and Central Asia, with a Critical Review of Some Recent OSL and TCN Dates. Development in Quaternary Science, Vol. 15 (d, Quaternary Glaciation — Extent and Chronology, A Closer Look, Ehlers J, Gibbard PL, Hughes PD, (Eds.)), Elsevier. pp 943–965.Google Scholar
  47. Kuhle M (2011b) The High Glacial (LGP, LGM, MIS 3-2) southern outlet glaciers of the Tibetan inland ice through Mustang into the Thak Khola as further evidence of the Tibetan ice. Journal of Nepal Geological Society (JNGS) 43: 175–200.Google Scholar
  48. Kuhle M (2012a) High-glacial (LGP, LGM, MIS 3-2) ice cover in the middle Marsyandi Nadi and the Damodar-Himal down to the junction of the Nar Khola and the Marsyandi Khola (N of Annapurna Himalaya). In: Hartmann M, Weipert J (Eds.), Biodiversity and Natural Heritage of the Himalaya. IV (Biodiversität und Naturausstattung im Himalaya), Erfurt. pp 9–46.Google Scholar
  49. Kuhle M (2012b) The Early and Late Glacial High Mountain Glaciation Surrounding Tibet as Topographic-Climatic Cause of High-Energetic Glacial Lake Outburst Floods (GLOFs) and Their Sedimentological Consequences in the Lower Mountain Forelands. In: Veress B, Szigethy J (Eds.), Horizons in Earth Science Research 7. Nova Science Publisher, New York, USA. pp 197–227.Google Scholar
  50. Kuhle M (2012c) The Former Tibetan Ice Sheet. In: Müller J, Koch L (Eds.), Ice Sheets: Dynamics, Formation and Environmental Concerns. Nova Science Publisher, New York, USA. pp 173–203.Google Scholar
  51. Kuhle M (2013) The uplift of High Asia above the snowline and its Glaciation as an albedo-dependent cause of the Quaternary ice ages. Nova Science Publisher, New York, USA. pp 1–240.Google Scholar
  52. Kuhle M, Kuhle S (2010) Review on dating methods: Numerical dating in the quaternary of high Asia. Journal of Mountain Science 7: 105–122.CrossRefGoogle Scholar
  53. Lal D (1991) Cosmic ray labeling of erosion surfaces: in situnuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424–439.CrossRefGoogle Scholar
  54. Mahaney WC (1995) Glacial crushing, weathering and diagenetic histories of quartz grains inferred from scanning electron microscopy. In: Menzies J (ed.), Modern Glacial Environments — Processes, Dynamics and Sediments 1: 487–506.Google Scholar
  55. Masarik J, Beer J (2009) An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research 114: 11103.CrossRefGoogle Scholar
  56. Masarik J, Frank M, Schäfer JM, et al. (2001) Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensitiy variations during the past 800,000 years. Geochimica et Cosmochimica Acta, 65(17) 2995–3003.CrossRefGoogle Scholar
  57. Masarik J, Reedy RC (1995) Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth and Planetary Science Letters 136: 381–395.CrossRefGoogle Scholar
  58. Owen LA, Robinson R, Benn DI, et al. (2009) Quaternary glaciation of Mount Everest. Quaternary Science Reviews 28: 1412–1433.CrossRefGoogle Scholar
  59. Owen LA, Chen J, Hedrick KA, et al. (2012) Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir. Quaternary Science Reviews 47: 56–72.CrossRefGoogle Scholar
  60. Purdue University (2008) Cosmic-Ray Produced Nuclide Systematics on Earth Project. Available online: http://www.physics.purdue.edu/primelab/CronusProject/cronus (Accessed on 22 July 2013).Google Scholar
  61. Schäfer JM, Tschudi S, Zhao ZZ, et al. (2002) The limited influence of glaciations in Tibet on global climate over the past 170000 yr. Erth and Planetary Science Letters 194: 287–297.CrossRefGoogle Scholar
  62. Schäfer JM, Oberholzer P, Zhao ZZ, et al. (2008) Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas. Quaternary Science Reviews 27: 295–311.CrossRefGoogle Scholar
  63. Seong YB, Owen LA, et al. (2009) Quaternary glaciations of Muztagh Ata and Kongur Shan: Evidence for glacier response of rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geological Society of America Bulletin 121(3/4): 348–365.CrossRefGoogle Scholar
  64. Seguin J (2013) Application and its limits of the basis of cosmogenic nuclide datings — a literature review (original title: Anwendbarkeit und Grenzen der Voraussetzungen kosmogener Nukliddatierungen — Analyse anhand von Literaturauswertung). Unpublished Bachelor thesis at the Department Geography and High Mountain Geomorphology, Geographical Insitute of the University of Göttingen (original title: Unveröffentlichte Bachlor of Arts-Arbeit im Department Geographie und Hochgebirgsgeomorphologie (GHG) des Geographischen Institut der Universität Göttingen: 1–59.Google Scholar
  65. Stone JO (2000) Air pressure and cosmogenic isotope production. In: Journal of Geophysical Research 105: 23753–23759.CrossRefGoogle Scholar
  66. Vita-Finzi C (2013) Solar History — An Introduction. Springer Verlag, Dordrecht/Heidelberg/New York/London. pp 1–90.Google Scholar
  67. Wagner M (2005) Geomorphological and pedological investigations on the glacial history of the Kali Gandaki (Nepal Himalaya). In: Kuhle M (ed.), Tibet and High Asia (VII), Glaciogeomorphology and Former Glaciation in the Himalaya and Karakorum. GeoJournal 3(1–4): 91–113.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Geography and High Mountain GeomorphologyUniversity of GöttingenGöttingenGermany

Personalised recommendations