Journal of Mountain Science

, Volume 10, Issue 4, pp 643–657 | Cite as

Analysis of longitudinal profiles along the eastern margin of the Qinghai-Tibetan Plateau

  • Simon J. AikenEmail author
  • Gary J. Brierley
Open Access


Resulting from the collision of the Eurasian and Indian plates, the Qinghai-Tibetan Plateau is commonly known as the ‘roof of the world’. Collectively the Yarlung Tsangpo, Nu, Lancang, Yangtze, Yalong, and Yellow River basins drain the eastern margin of the plateau. In this paper, we utilize Shuttle Radar Topography Mission elevation data to examine morphometric and relief attributes of these basins to reveal insights into tectonic activity and rates of incision. A robust technique using Matlab is proposed to alleviate errors associated with SRTM data in the derivation of river longitudinal profiles. Convex longitudinal profiles are interpreted to be a product of uplift rates that exceed rates of channel incision along the entire margin of the Qinghai-Tibetan Plateau. Highest relief towards the south reflects extensive fluvial incision. High relief is also prominent along major active faults. Erosion patterns are related to distance from knickpoints. Highest rates of erosion and incision are evident towards the south, with decreasing values towards the north, suggesting a link between tectonic activity and erosion.


Longitudinal profile Erosion Relief Tectonics Qinghai-Tibetan Plateau 


  1. Ahnert F (1984) Local relief and the height limits of mountain ranges. American Journal of Science 284: 1035–1055. DOI: 10.2475/ajs.284.9.1035CrossRefGoogle Scholar
  2. An Z, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411: 62–66. DOI: 10.1038/35075035CrossRefGoogle Scholar
  3. Beaumont C, Kooi H, Willett S (2000) Coupled tectonic-surface process models with applications to rifted margins and collisional orogens. In: Geomorphology and Global Tectonics, Summerfield, M.A (ed.). Wiley, Chichester. p 29Google Scholar
  4. Binnie S, Phillips W, Summerfield M, Fifield L (2007) Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range. Geology 35: 743–746. DOI: 10.1130/G23641A.1CrossRefGoogle Scholar
  5. Bishop P (2007) Long-term landscape evolution: Linking tectonics and surface processes. Earth Surface Processes and Landforms 32: 329–365. DOI: 10.1002/esp.1493CrossRefGoogle Scholar
  6. Burbank D, Leland J, Fielding E, Anderson R, Brozovic N (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379: 505–510. DOI: 10.1038/379505a0CrossRefGoogle Scholar
  7. Coleman M, Hodges K (1995) Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension. Nature 374: 45–92. DOI:10.1038/374049a0CrossRefGoogle Scholar
  8. Craddock WH, Kirby E, Harkins NH, Zhang H, Shi J (2010) Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geoscience 3: 209–213. DOI: 10.1038/ngeo777CrossRefGoogle Scholar
  9. England P, Houseman G (1986) Finite strain calculations of continental deformation II: comparison with the India-Asia collision zone. Journal of Geophysical Research 91: 3664–3676. DOI: 10.1029/JB091iB03p03664CrossRefGoogle Scholar
  10. Finlayson DP, Montgomery DR (2003) Modelling large-scale fluvial erosion in geographical information systems. Geomorphology 53: 147–164. DOI: 10.1016/S0169-555X(02) 00351-3CrossRefGoogle Scholar
  11. Gaudemer Y, Tapponnier P, Meyer B, et al. (1995) Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the Tianzhu gap, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International 120: 599–645. DOI: 10.1111/j.1365-246X.1995.tb01842.xCrossRefGoogle Scholar
  12. Hack J (1957) Studies of longitudinal stream profiles in Virginia and Maryland. US Geological Survey Professional Paper 294: 45–97.Google Scholar
  13. Hacker BR, Gnos E, Ratschbacher L, et al. (2000) Hot and dry xenoliths from the lower crust of Tibet. Science 287: 2463–2466. DOI: 10.1126/science.287.5462.2463CrossRefGoogle Scholar
  14. Harrison CG (2000) What factors control mechanical erosion rates?. International Journal of Earth Sciences 88: 752–763. DOI: 10.1007/s005310050303CrossRefGoogle Scholar
  15. Harrison TM, Chen W, Leloup PH, et al. (1992) An early Miocene transition in deformation regime within the Red River fault zone, Yunnan, and its significance for the Indo-Asian tectonics. Journal of Geophysical Research 97: 7159–7182. DOI: 10.1029/92JB00109CrossRefGoogle Scholar
  16. Hou Z, Zaw K, Pan G, et al. (2007) Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews 31: 48–87.CrossRefGoogle Scholar
  17. Jain V, Fryirs K, Brierley GJ (2008) Where do floodplains begin? The role of total stream power and longitudinal profile form on floodplain initiation processes. Geological Society of America Bulletin 120: 127–141. DOI: 10.1130/B26092.1CrossRefGoogle Scholar
  18. Jain V, Fryirs K, Preston N, et al. (2006) Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter River catchment, New South Wales, Australia. Geomorphology 74: 297–317. DOI: 10.1130/B26092.1CrossRefGoogle Scholar
  19. Kirby E, Reiners PW, Krol MA, et al. (2002) Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics 21: 1–20. DOI: 10.1029/2000TC001246CrossRefGoogle Scholar
  20. Klinger Y, Xu X, Taponnier P, et al. (2005) High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw ∼7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China. Bulletin of the Seismological Society of America 95: 1970–1987. DOI: 10.1785/0120040233CrossRefGoogle Scholar
  21. Kuo C, Brierley GJ (2012) The influence of landscape configuration upon patterns of sediment storage in a highly connected river system. Geomorphology 180: 255–266. DOI: 10.1016/j.geomorph.2012.10.015Google Scholar
  22. Lavé J, Avouac J (2001) Fluvial incision and tectonic uplift across the Himalayas of Central Nepal, Journal of Geophysical Research. 106: 26561–26592. DOI: 10.1029/2001JB000359CrossRefGoogle Scholar
  23. Leloup PH, Harrison TM, Ryerson FJ, et al. (1995) The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251: 3–84. DOI:10.1016/0040-1951(95)00070-4CrossRefGoogle Scholar
  24. Liu-Zeng J, Tapponnier P, Gaudemer Y, et al. (2008) Quantifying Landscape Differences Across the Tibetan Plateau: Implications for Topographic Relief. Journal of Geophysical Research 113: 2003–2012. DOI: 10.1029/2007JF 000897CrossRefGoogle Scholar
  25. Ludwig W, Probst JL (1998) River sediment discharges to the oceans: present-day controls and global budgets. American Journal of Science 298: 265–295. DOI: 10.2475/ajs.298.4.265CrossRefGoogle Scholar
  26. Metivier F, Gaudemer Y, Tapponnier P, et al. (1998) Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qiadam and Hexi Corridor basins, China. Tectonics 17: 823–842. DOI: 10.1029/98TC02764CrossRefGoogle Scholar
  27. Meyer B, Tapponnier P, Bourjot L, et al. (1998) Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International 135: 1–47. DOI: 10.1046/j.1365-246X.1998.00567.xCrossRefGoogle Scholar
  28. Nicoll T, Brierley G, Yu G. In press. A broad overview of landscape diversity of the Yellow River Source Zone. Journal of Geographical Sciences.Google Scholar
  29. Milliman JPM, Syvitski J (1992) Geomorphic/tectonic control of sediment discharge to the ocean — the importance of small mountainous rivers. Journal of Geology 100: 525–544. DOI: 10.1086/629606CrossRefGoogle Scholar
  30. Molnar P, Tapponnier P (1977) Relation of the tectonics of eastern China to the India-Eurasia collision: Application of slip-line field theory to large-scale continental tectonics. Geology 5(4): 212–216. DOI: 212-216. 10.1130/0091-7613CrossRefGoogle Scholar
  31. Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: Effects of a continental collision. Science 189: 419–426. DOI: 10.1126/science.189.4201.419CrossRefGoogle Scholar
  32. Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature 346: 29–34. DOI:10.1038/346029a0CrossRefGoogle Scholar
  33. Molnar P, England P (1993) Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics 31: 357–396. DOI: 10.1029/93RG02030CrossRefGoogle Scholar
  34. Montgomery DR (1994) Valley Incision and the uplift of mountain peaks. Journal of Geophysical Research 99: 13913–13921. DOI: 10.1029/94JB00122CrossRefGoogle Scholar
  35. Montgomery DR, Korup O (2010) Preservation of inner gorges through Alpine glaciations. Nature Geoscience 4: 62–67. DOI: 10.1038/ngeo1030CrossRefGoogle Scholar
  36. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters 201: 481–489. DOI: 10.1016/s0012-821x(02)00725-2CrossRefGoogle Scholar
  37. Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359: 117–122. DOI: 10.1038/359117a0CrossRefGoogle Scholar
  38. Reinfelds I, Cohen T, Batten P, et al. (2004) Assessment of downstream trends in channel gradient, total and specific stream power: a GIS approach. Geomorphology 60: 403–416. DOI: 10.1016/j.geomorph.2003.10.003CrossRefGoogle Scholar
  39. Royden L (1996) Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust, Journal of Geophysical Research 101: 17679–17705. DOI: 10.1029/96JB00951CrossRefGoogle Scholar
  40. Seeber L, Gornitz V (1983) River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics 92: 335–367. DOI:10.1016/0040-1951(83)90201-9.CrossRefGoogle Scholar
  41. Sobel ER, Hilley GE, Strecker MR (2003) Formation of internally drained contractional basins by aridity-limited bedrock incision. Journal of Geophysical Research 108: 2344–2365. DOI: 10.1029/2002JB001883CrossRefGoogle Scholar
  42. Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudation rates in major world drainage basins: Journal of Geophysical Research. 99: 13871–13883. DOI: 10.1029/94JB00715CrossRefGoogle Scholar
  43. Tapponnier P, Meyer B, Avouac JP, et al. (1990) Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth and Planetary Science Letters 97: 382–403. DOI: 10.1016/0012-821x(90)90053-zCrossRefGoogle Scholar
  44. Tapponnier P, Zhiqin X, Roger F, et al. (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294: 1671–1677. DOI: 10.1126/science.105978CrossRefGoogle Scholar
  45. Tippett J, Hovius N, (2000) Geodynamic processes in the Southern Alps, New Zealand. In: Geomorphology and Global Tectonics, Summerfield M. A (eds.). Wiley: Chichester. p 109.Google Scholar
  46. Walling DE, Webb BW (1996) Erosion and sediment yield: a global overview. In: Walling DE, Webb BW (eds.), Proceedings of an International Symposium on Erosion and Sediment Yield: Global and Regional Perspectives. International Association of Hydrological Sciences, v. 239. IAHS-Publications, Louvain. p 2.Google Scholar
  47. Wang Z, Yu G, Brierley GJ, et al. (2010) Stream networks and knickpoints in the Sanjiangyuan region. In: Brierley GJ, Li X and Gang C (eds.), Landscape and Environmental Science and Management in the Sanjiangyuan region. Qinghai People’s Publishing House, Xining. p 27.Google Scholar
  48. Weissel JL, Pratson F, Malinverno A (1994) The length scaling properties of topography. Journal of Geophysical Research. 99: 13997–14012. DOI: 10.1029/94JB00130CrossRefGoogle Scholar
  49. Whipple K, Kirby E, Brocklehurst S (1999) Geomorphic limits to climatically induced increases in topographic relief. Nature 401: 39–43. DOI: 10.1038/43375CrossRefGoogle Scholar
  50. Willet S, Slingerland R, Hovius N (2001) Uplift, shortening and steady state topography in active mountain belts. American Journal of Science 301: 455–485. DOI: 10.2475/ajs.301.4-5.455Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Environmentthe University of AucklandAucklandNew Zealand

Personalised recommendations