Journal of Mountain Science

, Volume 11, Issue 2, pp 449–463 | Cite as

Forest disturbance enhanced the activity of epedaphic collembola in windthrown stands of the High Tatra mountains

  • Veronika UrbanovičováEmail author
  • Dana Miklisová
  • Ľubomír Kováč


The study aimed to assess the response of ep- and hemiedaphic Collembola communities (activity, richness, community structure) to a disturbance, the subsequent management regime and to the season (summer, winter) in a High Tatra Mountains spruce forest destroyed by a windstorm. Fire and clear-cut resulted in an initial increase in the activity of Collembola inhabiting open areas, opportunistic or generalist species, while forest specialists diminished in numbers or disappeared. Our results indicated that treatment with nonextracted fallen trees (NEX) provided a better chance for forest species to survive compared with their survival in open habitats of extracted (EXT) and wildfire (FIR) treatments. Great species’ potential of NEX treatment was indicated by Chao2 estimator and activity/species rarefaction curves. Communities of NEX treatment were more similar to the reference (REF) treatment, documented by ordination and cluster analyses. Thus, leaving fallen timber after a windthrow to natural process of succession is suitable for survival of forest species and maintenance of diversity in forests restoration than timber extraction. Community structure in wildfire (FIR) stands was the most dissimilar to the other treatments. Most of the species trapped in this treatment belonged to hemiedaphic life forms, while the activity of larger epedaphic species diminished. In contrast, the highest number of trapped Collembola in EXT treatment was connected with the larger-bodied epigeic species with fast dispersal ability. The trapping period affected both the number of individuals and species richness; Collembola activity and species diversity in the individual treatments were lower in winter compared with the summer period. Several species increased activity during the winter period, namely Folsomia penicula, Friesea mirabilis, F. truncata, Hypogastrura socialis and Protaphorura aurantiaca.


Wildfire Windstorm Clear-cutting Collembola Spruce forest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas MJ (2012) Seasonal diversity of Collembola assemblages in two different habitats of Aligarh. Indian Journal of Fundamental and Applied Life Science 2: 18–25.Google Scholar
  2. Andrén H, Delin A, Seiler A (1997) Population response to landscape changes depends on specialization to different landscape elements. Oikos 80: 193–196.CrossRefGoogle Scholar
  3. Auclerc A, Ponge JF, Barot S, et al. (2009) Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biology & Biochemistry 41: 1596–1604. DOI: 10.1016/j.soilbio.2009.04.017CrossRefGoogle Scholar
  4. Barbercheck ME, Neher DA, Anas O, et al. (2009) Response of soil invertebrates to disturbance across three resource regions in North Carolina. Environmental Monitoring and Assessment 152: 283–298. DOI:10.1007/s10661-008-0315-5CrossRefGoogle Scholar
  5. Barjadze S, Schulz HJ, Burkhardt U, et al. (2012) New records for the Georgian springtail fauna (Collembola). Soil Organisms 84: 551–553.Google Scholar
  6. Behan-Pelletier VM (2003) Acari and Collembola biodiversity in Canadian agricultural soils. Canadian Journal of Soil Science 83: 279–288. DOI: 10.4141/S01-063CrossRefGoogle Scholar
  7. Bengtsson J, Nilsson SG, Franc A, et al. (2000) Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management 32: 39–50.CrossRefGoogle Scholar
  8. Bouget Ch, Duelli P (2004) The effects of windthrow on forest insect communities: a literature review. Biological Conservation 118: 281–299. DOI:10.1016/j.biocon.2003.09.009CrossRefGoogle Scholar
  9. Brand RH (2002) The effect of prescribed burning on epigeic springtails (Insecta: Collembola) of woodland litter. The American Midland Naturalist Journal 148: 383–393. DOI: 10.1674/0003-0031 (2002)148[0383:TEOPBO]2.0.CO;2CrossRefGoogle Scholar
  10. Bretfeld G (1999) Synopses on Palaearctic Collembola. Vol. 2. Symphypleona. Abhandlungen und Berichte des Naturkundemuseums, Görlitz 71. p 318.Google Scholar
  11. Chahartaghi M, Scheu S, Ruess L (2006) Sex ratio and mode of reproduction in Collembola of an oak-beech forest. Pedobiologia 50: 331–340. DOI:10.1016/j.pedobi.2006.06.001CrossRefGoogle Scholar
  12. Chauvat M, Zaitsev AS, Wolters V (2003) Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 137: 269–276. DOI: 10.1007/s00442-003-1310-8CrossRefGoogle Scholar
  13. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783–791.CrossRefGoogle Scholar
  14. Chao A, Chazdon RL, Colwell RK, et al. (2005) A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecology Letters 8: 148–159. DOI: 10.1111/j.1461-0248.2004.00707.xCrossRefGoogle Scholar
  15. Cole L, Bradford MA, Shaw PJA, et al. (2006) The abundance, richness and functional role of soil meso- and macrofauna in temperate grassland-A case study. Applied Soil Ecology 33: 186–198. DOI:10.1016/j.apsoil.2005.11.003CrossRefGoogle Scholar
  16. Colwell RK, Chao A, Gotelli NJ, et al. (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. Journal of Plant Ecology 5: 3–21. DOI: 10.1093/jpe/rtr044CrossRefGoogle Scholar
  17. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: Scholar
  18. Čerevková A, Renčo M (2009) Soil nematode community changes associated with windfall and wildfire in forest soil at the High Tatras National Park, Slovak Republic. Helminthologia 46: 123–130. DOI: 10.2478/s11687-009-0024-9CrossRefGoogle Scholar
  19. Čuchta P, Miklisová D, Kováč Ľ (2012a) Changes within collembolan communities in windthrown European montane spruce forests 2 years after disturbance by fire. Annals of Forest Science 69: 81–92. DOI: 10.1007/s13595-011-0114-yCrossRefGoogle Scholar
  20. Čuchta P, Miklisová D, Kováč Ľ (2012b) A three-year study of soil Collembola communities in spruce forest stands of the High Tatra Mts (Slovakia) after a catastrophic windthrow event. European Journal of Soil Biology 50: 151–158. DOI: 10.1016/j.ejsobi.2012.02.003CrossRefGoogle Scholar
  21. Dufréne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  22. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65: 169–175.CrossRefGoogle Scholar
  23. Eckert R, Palissa A (1999) Beiträge zur Collembolenfauna von Höhlen der deutschen Mittelgebirge (Harz, Kyffhäuser. Thüringer Wald, Zittauer Gebirge) (Insecta: Collembola). Beiträge zur Entomologie 49(1): 211–255.Google Scholar
  24. Falťan V, Pazúrová Z (2010) Evaluation of damage caused to various types of geotopes in the surroundings of Daniel’s House caused by the wind storm (High Tatras). Geographical Journal 62: 75–88. (In Slovak)Google Scholar
  25. Fjellberg A (1998). The Collembola of Fennoscandia and Denmark, part I: Poduromorpha, Fauna Entomologica Scandinavica 35, Brill, Leiden, Boston. p 184.Google Scholar
  26. Fjellberg A (2007) The Collembola of Fennoscandia and Denmark, part II: Entomobryomorpha and Symphypleona, Fauna Entomologica Scandinavica 42, Brill, Leiden, Boston. p 264.CrossRefGoogle Scholar
  27. Fleischer P, Koreň M Škvarenina J, et al. (2009) Risk Assessment of the Tatra Mountains Forest. In: Střelcová, K et al. (eds.), Bioclimatology and Natural Hazards. Springer Netherlands, pp. 145–154. DOI: 10.1007/978-1-4020-8876-6CrossRefGoogle Scholar
  28. Fountain MT, Brown VK, Gange AC, et al. (2007) The effects of the insecticide chlorpyrifos on spider and Collembola communities. Pedobiologia 51: 147–158. DOI: 10.1016/j.pedobi.2007.03.001CrossRefGoogle Scholar
  29. Gömöryová E, Střelcová K, Škvarenina J, et al. (2008) The impact of windthrow and fire disturbance on selected soil properties in the Tatra National Park. Soil & Water Research 3: 74–80.Google Scholar
  30. Gömöryová E, Střelcová K, Fleischer P, et al. (2011) Soil microbial characteristics at the monitoring plots on windthrow areas of the Tatra National Park (Slovakia): their assessment as environmental indicators. Environmental Monitoring and Assessment 174: 31–45. DOI: 10.1007/s10661-010-1755-2CrossRefGoogle Scholar
  31. Gudleifsson BE, Bjarnadottir B (2008) Springtail (Collembola) populations in hayfields and pastures in northern Iceland. Icelandic Agricultural Sciences 21: 49–59.Google Scholar
  32. Hågvar S (2010) A review of Fennoscandian arthropods living on and in snow. European Journal of Entomology 107: 281–298.CrossRefGoogle Scholar
  33. Hågvar S, Hågvar EB (2011) Invertebrate activity under snow in a South-Norwegian spruce forest. Soil Organisms 83: 187–209.Google Scholar
  34. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion implications for conservations. Conservation Biology 6: 324–337. DOI: 10.1046/j.1523-1739.1992.06030324.xCrossRefGoogle Scholar
  35. Hopkin SP (1997) Biology of the Springtails. Insecta: Collembola. Oxford University Press, Oxford. p 330.Google Scholar
  36. Huebner K, Lindo Z, Lechowicz MJ (2012) Post-fire succession of collembolan communities in a northern hardwood forest. European Journal of Soil Biology 48: 59–65. DOI: 10.1016/j.ejsobi.2011.10.004CrossRefGoogle Scholar
  37. Huhta V, Nurminen M, Valpas A (1969) Further notes on the effect of silvicultural practices upon the fauna of coniferous forest soil. Annales Zoologici Fennici 6: 327–334.Google Scholar
  38. Jonášová M, Vavrová E, Cudlín P (2010) Western Carpathian mountain spruce forest after a windthrow: Natural regeneration in cleared and uncleared areas. Forest Ecology and Management 259: 1127–1134. DOI: 10.1016/j.foreco.2009.12.027CrossRefGoogle Scholar
  39. Jordana R (2012) Capbryinae & Entomobryini. In: Dunger W, Burkhardt U (Eds.), Synopses on Palaearctic Collembola, Volume 7, Part 1. Senckenberg Museum of Natural History Görlitz, Germany.Google Scholar
  40. Kappes H, Jabin M, Kulfan J, et al. (2009) Spatial patterns of litter-dwelling taxa in relation to the amounts of coarse woody debris in European temperate deciduous forests. Forest Ecology and Management 257: 1255–1260. DOI: 10.1016/j.foreco.2008.11.021CrossRefGoogle Scholar
  41. Kuznetsova NA, Krestyaninova AI (1998) Dynamics of springtail communities (Collembola) in hydrological series of pine forests in Southern Taiga. Entomological Review 78(8): 969–981.Google Scholar
  42. Leinaas HP (1981) Activity of Arthropoda in snow within a coniferous forest, with special reference to Collembola. Holarctic Ecology 4: 127–138.Google Scholar
  43. Lindemann JD, Baker WL (2001) Attributes of blowdown patches from a severe wind event in the Southern Rocky Mountains, USA. Landscape Ecology 16: 313–325.CrossRefGoogle Scholar
  44. Lindo Z, Visser S (2003) Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Canadian Journal of Forest Research 33: 1610–1620. DOI: 10.1139/X03-080CrossRefGoogle Scholar
  45. Lóšková J, Ľuptáčik P, Miklisová D, et al. (2013) The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). European Journal of Soil Biology 55: 1–8. DOI: 10.1016/j.ejsobi.2013.01.001CrossRefGoogle Scholar
  46. Maleque MA, Ishii H, Maeto K (2006) The use of arthropods as indicators of ecosystem integrity in forest management. Journal of Forestry 104: 113–117. DOI: 10.1007/s10310-006-0243-6Google Scholar
  47. Malmström A (2008) Temperature tolerance in soil microarthropods: Simulation of forest-fire heating in the laboratory. Pedobiologia 51: 419–426. DOI: 10.1016/j.pedobi.2008.01.001CrossRefGoogle Scholar
  48. Malmström A, Persson T, Ahlström K, et al. (2009) Dynamics of soil meso- and macrofauna during a 5-year period after clear-cut burning in a boreal forest. Applied Soil Ecology 43: 61–74. DOI: 10.1016/j.apsoil.2009.06.002CrossRefGoogle Scholar
  49. Malmström A (2012) Life-history traits predict recovery patterns in Collembola species after fire: A 10 year study. Applied Soil Ecology 56: 35–42. DOI: 10.1016/j.apsoil.2012.02.007CrossRefGoogle Scholar
  50. Marshall VG (2000) Impacts of forest harvesting on biological processes in northern forest soils. Forest Ecology and Management 133: 43–60.CrossRefGoogle Scholar
  51. McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software, Gleneden Beach, Oregon, USA.Google Scholar
  52. McCune B, Mefford MJ (2011) PC-ORD, Multivariate Analysis of Ecological Data, Version 6.07. MjM Software, Gleneden Beach, Oregon, USA.Google Scholar
  53. Moore JD, Ouimet R, Camiré C, et al. (2002) Effects of two silvicultural practices on soil fauna abundance in a northern hardwood forest, Québec, Canada. Canadian Journal of Soil Science 82: 105–113.CrossRefGoogle Scholar
  54. Neary DG, Klopatek CC, DeBano LF, et al. (1999) Fire effects on belowground sustainability a review and synthesis, Forest Ecology and Management 122: 51–71.CrossRefGoogle Scholar
  55. Niemelä J (1997) Invertebrates and boreal forest management. Conservation Biology 11: 601–610. DOI: 10.1046/j.1523-1739.1997.06008.xCrossRefGoogle Scholar
  56. Nordén B, Götmark F, Tönnberg M, et al. (2004) Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. Forest Ecology and Management 194: 235–248. DOI: 10.1016/j.foreco.2004.02.043CrossRefGoogle Scholar
  57. Nosek J (1967) The investigation of the Apterygotan fauna of the Low Tatras. Acta Universitatis Carolinae — Biologica 5/6: 349–528.Google Scholar
  58. Ponge JF (1993) Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia 37: 223–244.Google Scholar
  59. Ponge JF, Gillet S, Dubs F, et al. (2003) Collembolan communities as bioindicators of land use intensification. Soil Biology and Biochemistry 35: 813–826. DOI: 10.1016/s0038-0717(03)00108-1CrossRefGoogle Scholar
  60. Pomorski RJ (1998) Onychiurinae of Poland (Collembola: Onychiuridae). Genus (Supplement), Polish Taxonomical Society, WrocŁaw. p 201.Google Scholar
  61. Potapov M (2001) Synopses on Palaearctic Collembola. Vol. 3. Isotomidae. Abhandlungen und Berichte des Naturkundemuseums, Görlitz 73. p 603.Google Scholar
  62. Repáč I, Tučeková A, Sarvašová I, et al. (2011) Survival and growth of outplanted seedlings of selected tree species on the High Tatra Mts. windthrow area after the first growing season. Journal of Forest Science 57(8): 349–358.Google Scholar
  63. Rusek J (1995) Collembola. In: Rozkošný R et al. (Eds.), Terrestrial Invertebrates of the Pálava Biosphere Reserve of UNESCO. I. Folia Fac. Sci. Nat. Uni. Masarykianae Brunensis, Biologia 92. pp. 103–109.Google Scholar
  64. Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystems. Biodiversity and Conservation 7: 1207–1219.CrossRefGoogle Scholar
  65. Rusek J, Brůhová J (2007) Impact of bark beetle outbreak on epigeic communities of Collembola (Insecta: Entognatha) in climax spruce forests in the Šumava National Park, Czech Republic. In: Tajovský K et al. (Eds.), Contributions to Soil Zoology in Central Europe II. Institute of Soil Biology AS CR, České Budějovice. pp 121–126.Google Scholar
  66. Setälä H, Marshall VG (1994) Stumps as a habitat for Collembola during succession from clear-cuts to old-growth Douglas-fir forests. Pedobiologia 38: 307–326.Google Scholar
  67. Siira-Pietikäinen A, Haimi J (2009) Changes in soil fauna 10 years after forest harvestings: comparison between clear felling and green tree retention methods. Forest Ecology and Management 258: 332–338. DOI: 10.1016/j.foreco.2009.04.024CrossRefGoogle Scholar
  68. Slawski M, Slawska M (2000) The forest edge as a border between forest and meadow. Vegetation and Collembola communities. Pedobiologia 44: 442–450. DOI: 10.1078/S0031-4056(04)70062-1Google Scholar
  69. Slawski M, Slawska M (2007) The dynamics of composition and structure of epigeic — soil communities of Collembola in the stands of Pisz Forests destroyed by the hurricane. In: Skłodowski J (Ed.), Zooindicative Monitoring of Hurricane Caused Damage of Forest Ecosystems of Pisz Forest, Warsaw Agricultural University Press, Poland. pp. 53–95.Google Scholar
  70. Sousa JP, Bolger T, Da Gama MM, et al. (2006) Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia 50: 147–156. DOI: 10.1016/j.pedobi.2005.10.005CrossRefGoogle Scholar
  71. StatSoft Inc. (2009) STATISTICA (data analysis sowtware system), version 9.0. Scholar
  72. Šimkovic I, Dlapa P, Šimonovičová A, et al. (2009) Water repellency of mountain forest soils in relation to impact of the katabatic windstorm and subsequent management practices. Polish Journal of Environmental Studies 18: 443–454.Google Scholar
  73. Šoltés R, Školek J, Homolová Z, et al. (2010) Early successional pathways in the Tatra Mountains (Slovakia) forest ecosystems following natural disturbances. Biologia 65: 958–964. DOI: 10.2478/s11756-010-0110-yCrossRefGoogle Scholar
  74. Šustek Z (2007) Wind disaster in High Tatras in 2004 and its impacts on Carabid communities (Col. Carabidae). In: Fleischer P et al. (Eds.) Windfall Research in the TANAP. Geophysical Institute SAS, Bratislava. CD-ROM, ISBN: 978-80-85754-17-9 (In Slovak).Google Scholar
  75. Thibaud J-M, Schulz H-J, Da Gama Assalino MM (2004) Synopses on Palaearctic Collembola.Vol. 4. Hypogastruridae. Abhandlungen und Berichte des Naturkundemuseums, Görlitz 75. p 287.Google Scholar
  76. Urbanovičová V, Kováč Ľ, Miklisová D (2010) Epigeic arthropod communities of spruce forest stands in the High Tatra Mts. (Slovakia) with special reference to Collembola — first year after windthrow. Acta Societatis Zoologicae Bohemicae 74: 141–152.Google Scholar
  77. Weiner WM (1981) Collembola of the Pieniny Nationsl Park in Poland. Acta Zoologica Cracoviensia 25: 417–500.Google Scholar
  78. Wootton JT (1998) Effects of disturbance on species diversity: a multitrophic perspective. The American Naturalist 152: 803–825.CrossRefGoogle Scholar
  79. Zielonka T, Holeksa J, Fleischer P, et al. (2010) A tree-ring reconstruction of wind disturbances in a forest of the Slovakian Tatra Mountains, Western Carpathians. Journal of Vegetation Science 21: 31–42. DOI: 10.1111/j.1654-1103.2009.01121.xCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Veronika Urbanovičová
    • 1
    Email author
  • Dana Miklisová
    • 2
  • Ľubomír Kováč
    • 1
  1. 1.Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
  2. 2.Institute of ParasitologySlovak Academy of SciencesKošiceSlovakia

Personalised recommendations